
Explaining Black-box Android Malware Detection
Marco Melis∗, Davide Maiorca∗, Battista Biggio∗†, Giorgio Giacinto∗† and Fabio Roli∗†

∗DIEE, University of Cagliari, Piazza d’Armi, 09123, Cagliari
{marco.melis,davide.maiorca,battista.biggio,giacinto,roli}@diee.unica.it

† Pluribus One, Italy

Abstract—Machine-learning models have been recently used
for detecting malicious Android applications, reporting impres-
sive performances on benchmark datasets, even when trained
only on features statically extracted from the application, such as
system calls and permissions. However, recent findings have high-
lighted the fragility of such in-vitro evaluations with benchmark
datasets, showing that very few changes to the content of Android
malware may suffice to evade detection. How can we thus trust
that a malware detector performing well on benchmark data will
continue to do so when deployed in an operating environment? To
mitigate this issue, the most popular Android malware detectors
use linear, explainable machine-learning models to easily identify
the most influential features contributing to each decision. In this
work, we generalize this approach to any black-box machine-
learning model, by leveraging a gradient-based approach to
identify the most influential local features. This enables using
nonlinear models to potentially increase accuracy without sacri-
ficing interpretability of decisions. Our approach also highlights
the global characteristics learned by the model to discriminate
between benign and malware applications. Finally, as shown by
our empirical analysis on a popular Android malware detection
task, it also helps identifying potential vulnerabilities of linear
and nonlinear models against adversarial manipulations.

I. INTRODUCTION

With more than 400 millions of malicious applications
discovered in the wild, Android malware constitutes one of the
major threats in mobile security. Among the various detection
strategies proposed by companies and academic researchers,
those based on machine learning have shown the most promis-
ing results, due to their flexibility against malware variants and
obfuscation attempts [1], [7]. Despite the impressive perfor-
mances reported by such approaches on benchmark datasets,
the problem of Android malware detection in the wild is still
far from being solved. The validity of such optimistic, in-vitro
evaluations has been indeed questioned from recent adversarial
analyses showing that only few changes to the content of a
malicious Android application may suffice to evade detection
by a learning-based detector [6], [8]. Besides this fragility to
well-crafted evasion attacks (a.k.a. adversarial examples) [4],
[5], [10], [18], Sommer and Paxson [16] have more gener-
ally questioned the suitability of black-box machine-learning
approaches to computer security. In particular, how can we
thus trust the predictions of a machine-learning model in vivo,
i.e., when it is deployed in an operating environment, to take
subsequent reliable actions? How can we understand whether
we are selecting a proper model before deployment? How
about its security properties against adversarial attacks?

To partially address these issues, Android malware detectors
often restrict themselves to the use of linear, explainable

machine-learning models that allow one to easily identify
the most influential features contributing to each decision
(Sect. II) [1], [2]. More generally, intepretability of machine-
learning models has recently become a relevant research
direction to more thoroughly address and mitigate the afore-
mentioned issues, especially in the case of nonlinear black-
box machine-learning algorithms [3], [9], [12]–[14]. Some ap-
proaches aim to explain local predictions (i.e., on each specific
sample) by identifying the most influential features [3], [14]
or prototypes from training data [12]. Others have proposed
techniques and methodologies towards providing global ex-
planations about the salient characteristics learned by a given
machine-learning algorithm [9], [13].

In this work, we generalize current explainable Android
malware detection approaches to any black-box machine-
learning model, by leveraging a gradient-based approach to
identify the most influential local features (Sect. III). For
non-differentiable learning algorithms, like decision trees,
we extract gradient information by learning a differentiable
approximation. Notably, this idea has originally been ex-
ploited to construct gradient-based evasion attacks against
non-differentiable learners, and evaluate their transferability,
i.e., the probability that an attack crafted against a learning
algorithm succeeds against a different one [4], [10], [15]. Ac-
cordingly, our approach provides interpretable decisions even
for Android malware detectors exploiting nonlinear learning
algorithms to potentially increase detection accuracy. More-
over, by averaging the local relevant features across different
classes of samples, our approach allows also highlighting the
global characteristics learned by a given model to identify
benign applications and different classes of Android malware.

We perform our experimental analysis with a popular An-
droid malware detector named Drebin [1] (Sect. IV). It extracts
information the Android application through static analysis,
and provides interpretable decisions by leveraging a linear
classification algorithm. To test the validity of our approach,
we show how to retain the interpretability of Drebin on non-
linear algorithms, including Support Vector Machines (SVMs)
and Random Forests (RFs). Interestingly, we also show that the
interpretations provided by our approach can help identifying
potential vulnerabilities of both linear and nonlinear Android
malware detectors against adversarial manipulations.

We conclude the paper by discussing contributions and
limitations of this work, and future research directions towards
developing more robust malware detectors (Sect. V).

II. ANDROID MALWARE DETECTION

In this section, we provide some background on how An-
droid applications are structured, and then discuss Drebin [1],
the malware detector used in our analysis.

A. Android Background

Android applications are apk files, i.e., zipped archives
that must contain two files: the Android manifest and the
classes.dex. Additional xml and resource files are respectively
used to define the application layout and to provide multimedia
contents. As Drebin only analyzes the Android manifest
and classes.dex files, we briefly describe them below.

Android Manifest. The manifest file holds information
about how the application is organized in terms of its compo-
nents, i.e., parts of code that perform specific actions; e.g.,
one component might be associated to a screen visualized
by the user (activity) or to the execution of audio in the
background (services). It is also possible to perform actions on
the occurrence of a specific event (receivers). The actions of
each component are further specified through filtered intents;
e.g., when a component sends data to other applications, or
is invoked by a browser. Special types of intent filters (e.g.,
LAUNCHER) can specify that a certain component is executed
as soon as the application is opened. The manifest also
contains the list of hardware components and permissions
requested by the application to work (e.g., Internet access).

Dalvik Bytecode (dexcode). The classes.dex file embeds the
compiled source code of an application, including all the user-
implemented methods and classes. Classes.dex may contain
specific API calls that can access sensitive resources such as
personal contacts (suspicious calls). Additionally, it contains
all system-related, restricted API calls whose functionality
require permissions (e.g., using the Internet). Finally, this file
can contain references to network addresses that might be
contacted by the application.

B. Drebin

Drebin performs a lightweight static analysis of Android
applications. The extracted features are used to embed benign
and malware apps into a high-dimensional vector space, train
a machine-learning model, and then perform classification of
never-before-seen apps. An overview of the system architec-
ture is given in Fig. 1, and discussed more in detail below.

Feature extraction. First, Drebin statically analyzes a set of
available Android applications to construct a suitable feature
space. All features extracted by Drebin are presented as strings
and organized in 8 different feature sets, as listed in Table I.
Android applications are then mapped onto the feature space
as follows. Let us assume that an app is represented as an
object z ∈ Z , being Z the abstract space of all apk files. We
then denote with Φ : Z 7→ X a function that maps an apk file
z to a d-dimensional feature vector x = (x1, . . . , xd)> ∈ X =
{0, 1}d, where each feature is set to 1 (0) if the corresponding
string is present (absent) in the apk file z. An application
encoded in feature space may thus look like the following:

x = Φ(z) 7→

· · ·
0
1
· · ·
1
0
· · ·

· · · }
S2

permission::SEND_SMS
permission::READ_SMS
· · · }

S5
api_call::getDeviceId
api_call::getSubscriberId
· · ·

Learning and Classification. Drebin uses a linear SVM to
perform detection. It can be expressed in terms of a linear
function f : X 7→ R, i.e., f(x) = w>x + b, where w ∈
Rd denotes the vector of feature weights, and b ∈ R is the
so-called bias. These parameters, optimized during training,
identify a hyperplane that separates the two classes in feature
space. During classification, unseen apps are then classified as
malware if f(x) ≥ 0, and as benign otherwise.
Explanation. Drebin explains its decisions by reporting, for
any given application, the most influential features, i.e., the
features that are present in the given application and are
assigned the highest absolute weights by the classifier. For
instance, in Fig. 1, it is easy to see, from its most influential
features, that a malware sample is correctly identified by
Drebin as it connects to a suspicious URL and uses SMS as
a side channel for communication. As we aim to extend this
approach to nonlinear models, in this work we also consider
an SVM with the Radial Basis Function (RBF) kernel and a
random forest to learn nonlinear functions f(x).

III. INTERPRETING DECISIONS OF LEARNING-BASED
BLACK-BOX ANDROID MALWARE DETECTORS

We discuss here our idea to generalize the explainable
decisions of Drebin and other locally-explainable Android
malware detectors [1], [2] to any black-box (i.e., nonlinear)
machine-learning algorithm. In addition, we also propose a
method to explain the global characteristics influencing the
decisions of the learning-based malware detector at hand.
Local explanations. Previous work has highlighted that gra-
dients and, more generally, linear approximations computed
around the input point x convey useful information for ex-
plaining the local predictions provided by a learning algo-
rithm [3], [14]. The underlying idea is to identify as most
influential those features associated to the highest (absolute)
values of the local gradient ∇f(x), being f the confidence
associated to the predicted class. However, in the case of
sparse data, as for Android malware, these approaches tend
to identify a high number of influential features which are not
present in the given application, thus making the correspond-
ing predictions difficult to interpret. For this reason, in this

TABLE I
OVERVIEW OF FEATURE SETS.

manifest dexcode

S1 Hardware components S5 Restricted API calls
S2 Requested permissions S6 Used permission
S3 Application components S7 Suspicious API calls
S4 Filtered intents S8 Network addresses

Classification label: malware
Detection score: +1.92
Explanation
0.52 NETWORK:lebar.gicp.net
0.45 PERMISSION:SEND_SMS
0.45 INTENT:SMS_RECEIVED
...

ClassifierFeature
Extraction

x1
x2
...
xdAndroid app (apk)

Class labels (malware, benign)

malware

benign

Decision
(Explanation)

Training
x1

x2
φ(z)

z x
f (x)

Fig. 1. A schematic representation of Drebin, adapted from [8]. First, applications are represented as binary vectors in a d-dimensional feature space. A linear
classifier is then trained on an available set of malware and benign applications, assigning a weight to each feature. During classification, unseen applications
are scored by the classifier by summing up the weights of the present features: if f(x) ≥ 0, they are classified as malware. Drebin also explain each decision
by reporting the most suspicious (or benign) features present in the app, along with the weight assigned to them by the linear classifier [1].

0.5 1 2 5 10
False Positive Rate (%)

96

97

98

99

100

D
e
te

ct
io

n
 R

a
te

 (
%

)

SVM
SVM-RBF
RF

Fig. 2. Average ROC curves for the given classifiers on the Drebin data.

work we consider a slightly different approach, inspired from
the notion of directional derivative. In particular, we project
the gradient∇f(x) onto x to obtain a feature-relevance vector
ν = ∇f(x) · x ∈ Rd, where · denotes the element-wise
product. We then normalize ν to have a unary `1 norm, i.e.,
r = ν/‖ν‖1, to ensure that only non-null features in x are
identified as relevant for the decision. Finally, the absolute
values of r can be ranked in descending order to identify the
most influential local features.

Global explanations. In contrast to other locally-explainable
malware detectors [1], [2], we also provide a global analysis of
the interpretability of the considered machine-learning models,
aimed to identify the most influential features, on average,
which characterize benign and malware samples. Our idea
is simply to average the relevance vectors r over different
samples, e.g., separately for benign and malware data. Then, as
in the local case, the absolute values of the average relevance
vector r̄ can be ranked in descending order to identify the
most influential global features.

Non-differentiable models. Our approach works under the
assumption that f(x) is differentiable and that its gradient
∇f(x) is sufficiently smooth to provide meaningful informa-
tion at each point. When f(x) is not differentiable (e.g., for de-
cision trees and random forests), or its gradient vanishes (e.g.,
if f(x) becomes constant in large regions of the input space),
we compute approximate feature-relevance vectors by means
of surrogate models. The idea is to train a differentiable ap-
proximation f̂(x) of the target function f(x), similar to what
has been done in [3] for interpretability of non-differentiable
models, and in [4], [15] to craft gradient-based evasion attacks
against non-differentiable learning algorithms. For instance, to
reliably estimate a non-differentiable algorithm f(x) (e.g., a
random forest), one can train a nonlinear SVM on a training
set relabeled with the predictions provided by f(x) [15].

IV. EXPERIMENTAL ANALYSIS

In this section, we use our approach to provide local
and global explanations for linear and nonlinear (including
non-differentiable) classifiers trained on the features used by
Drebin. As we will see, this will also reveal some insights on
their security against adversarial manipulations [6], [8].

Datasets. We use here the Drebin data [1], consisting of
121, 329 benign applications and 5, 615 malicious samples,
labeled with VirusTotal. A sample is labeled as malicious if
it is detected by at least five anti-virus scanners, whereas it is
labeled as benign if no scanner flagged it as malware.

Training-test splits. We average our results on 5 runs. In each
run, we randomly select 60,000 apps from the Drebin data to
train the learning algorithms, and use the rest for testing.

Classifiers. We compare the standard Drebin implementation
based on a linear SVM (SVM) against an SVM with the
RBF kernel (SVM-RBF) and a (non-differentiable) Random
Forest (RF). As discussed in Sect. III, a surrogate model is
needed to interpret the RF; to this end, we train an SVM
with the RBF kernel on the training set relabeled by the RF
(yielding an approximation with accuracy higher than 99% on
average on the relabeled testing sets). The Receiver Operating
Characteristic (ROC) curve for each classifier, averaged over
the 5 repetitions, is reported in Fig. 2.

Parameter setting. We optimize the parameters of each
classifier through a 3-fold cross-validation procedure. In par-
ticular, we optimize C ∈ {10−2, 10−1, . . . , 102} for both
linear and non-linear SVMs, the kernel parameter γ ∈
{10−4, 10−3, . . . , 102} for the SVM-RBF, and the number of
estimators n ∈ {5, 10, . . . , 30} for the RF.

A. Local Explanations

Table II reports the top-10 influential features, sorted by
their (absolute) relevance values, for three distinct samples
classified by the linear SVM and the RF classifier, along
with their probability of being present in each class. Notably,
relevant features can also be rare. This means that a feature
is deemed relevant even if it characterizes well only a small
subset of samples in a given class (e.g., a malware family).

Case 1. The first example is a benign application misclassified
by the SVM with a score of −0.17, and correctly classified
by the RF (probability 0.77% and surrogate score of +0.10).
By observing the features through their relevance scores, it is

TABLE II
TOP-10 INFLUENTIAL FEATURES FOR SVM (TOP ROW) AND RF (BOTTOM ROW) ON (i) A BENIGN SAMPLE (FIRST COLUMN), (ii) A MALWARE SAMPLE

OF THE SMSWATCHER FAMILY (SECOND COLUMN), AND (iii) A MALWARE SAMPLE OF THE PLANKTON FAMILY (THIRD COLUMN). THE PROBABILITY OF
EACH FEATURE BEING PRESENT IN BENING (pB) AND MALWARE (pM) IS ALSO REPORTED.

Set Feature Name r (%) pB (%) pM (%)

S2 SEND SMS 26.89 3.19 53.89
S4 LAUNCHER -15.40 96.42 93.56
S6 SEND SMS 9.42 3.11 44.76
S2 GET ACCOUNTS 8.61 2.57 8.06
S8 code.google.com 6.38 1.10 1.73
S7 Ljava/io/IOException;->printStackTrace 6.09 49.82 66.85
S2 READ CONTACTS -4.61 7.25 23.75
S2 INTERNET 4.30 83.29 96.26
S8 ajax.googleapis.com -3.19 0.76 0.54
S4 android.intent.action.MAIN 2.91 97.52 95.88

Set Feature Name r (%) pB (%) pM (%)

S2 SEND SMS 10.94 3.19 53.89
S3 com.rjblackbox.swl.SMSActivity 9.72 0.00 0.04
S3 com.rjblackbox.swl.SMSForwarder 9.72 0.00 0.04
S3 com.rjblackbox.swl.SettingsActivity 9.72 0.00 0.04
S4 android.provider.Telephony.SMS RECEIVED 8.13 1.09 20.08
S4 LAUNCHER -6.26 96.42 93.56
S2 RECEIVE SMS -4.82 2.43 38.36
S6 SEND SMS 3.83 3.11 44.76
S7 Lorg/apache/http/client/methods/HttpPost 3.52 29.95 51.89
S7 android/telephony/SmsMessage;->createFromPdu -3.51 1.44 16.19

Set Feature Name r (%) pB (%) pM (%)

S7 TelephonyManager;->getNetworkOperator 3.00 6.01 46.57
S4 LAUNCHER -2.50 96.42 93.56
S7 TelephonyManager;->getNetworkOperatorName -2.46 5.08 28.99
S6 ACCESS NETWORK STATE -2.32 47.92 56.40
S7 android/net/Uri;->fromFile 2.13 16.81 43.10
S2 INSTALL SHORTCUT (launcher) 2.04 1.51 26.37
S2 READ HISTORY BOOKMARKS (browser) 1.73 0.52 17.89
S5 LocationManager;->isProviderEnabled -1.70 12.53 17.12
S7 com.apperhand.device.android.AndroidSDKProvider 1.70 0.00 10.95
S7 java/lang/reflect/Method;->getReturnType -1.52 5.97 12.22

Set Feature Name r (%) pB (%) pM (%)

S2 SEND SMS 25.82 3.19 53.89
S4 LAUNCHER -18.49 96.42 93.56
S2 READ CONTACTS -10.24 7.25 23.75
S7 Ljava/io/IOException;->printStackTrace 7.90 49.82 66.85
S5 android/telephony/SmsManager;->sendTextMessage 7.75 1.77 34.73
S7 android/telephony/SmsManager;->sendTextMessage 7.65 1.77 34.73
S6 INTERNET -4.43 77.74 85.43
S8 ajax.googleapis.com -2.88 0.76 0.54
S5 android/telephony/SmsManager;->getDefault 1.77 2.01 37.63
S7 android/telephony/SmsManager;->getDefault 1.66 2.01 37.63

Set Feature Name r (%) pB (%) pM (%)

S2 SEND SMS 14.04 3.19 53.89
S4 LAUNCHER -13.65 96.42 93.56
S4 SMS RECEIVED 8.39 1.09 20.08
S2 RECEIVE SMS -8.02 2.43 38.36
S7 android/net/Uri;->withAppendedPath -6.96 9.24 16.96
S5 LocationManager;->getLastKnownLocation -6.45 27.09 31.65
S7 Lorg/apache/http/client/methods/HttpPost 4.80 29.95 51.89
S7 android/net/Uri;->encode -4.64 9.52 8.17
S7 getPackageInfo -3.74 53.80 49.50
S2 READ CONTACTS -3.57 7.25 23.75

Set Feature Name r (%) pB (%) pM (%)

S4 LAUNCHER -2.75 96.42 93.56
S2 INSTALL SHORTCUT (launcher) 2.19 1.51 26.37
S2 ACCESS WIFI STATE 1.81 10.59 43.10
S7 TelephonyManager;->getNetworkOperator 1.74 6.01 46.57
S5 Contacts$People;->createPersonInMyContactsGroup -1.64 3.53 0.89
S6 READ CONTACTS -1.55 12.89 7.79
S4 BOOT COMPLETED 1.51 6.73 66.08
S2 WRITE SETTINGS -1.49 3.67 12.34
S5 LocationManager;->isProviderEnabled -1.48 12.53 17.12
S7 android/net/Uri;->encode -1.44 9.52 8.17

TABLE III
TOP 15 MALWARE FAMILIES IN THE TEST SET.

Family # Family # Family # Family # Family #

FakeInstaller 901 Opfake 591 Iconosys 149 Adrd 88 LinuxLotoor 69
DroidKungFu 640 GingerMaster 332 Kmin 144 Geinimi 88 MobileTx 68
Plankton 609 BaseBridge 318 FakeDoc 128 DroidDream 81 GoldDream 67

evident that the RF is able to correctly classify this sample as
benign as several features are assigned a negative relevance
score, while almost all of them are considered as malicious
(positive score) by the SVM. In both cases the use of SMS
messages for communication is retained suspicious; however,
for the RF this is not a sufficient evidence of maliciousness.

Case 2. The second example is a malware sample of the
SmsWatcher family, which is correctly classified by the
SVM (score +0.99), but not by the RF model (probability
0.3% and surrogate score of −1.43), for a reason similar to
the previous case: permissions (S2) and API calls (S7) related
to SMS usage are not a sufficient evidence of maliciousness
for the RF. Indeed, this classifier does not even identify as
suspicious the application components (S3) related to SMS
usage, which instead constitute a signature for this malware
family, as correctly learned by the linear SVM model.

Case 3. The last case is a malware sample of the Plankton
family, correctly classified by both models (SVM score +2.75;
RF probability 0.9% and surrogate score +1.32), as they
correctly identified the behavioral patterns of this family
associated to HTTP communication and actions.

B. Global Explanations

We performed a global analysis of the models learned by
each algorithm by averaging the local relevance vectors r over
different classes of samples: benign, malware, and the top-
15 malware families with the largest number of samples in
the Drebin data (Table III). This gives us a global (mean)
relevance vector r̄ for each class. Then, for each class of
samples, we report a compact and a fine-grained analysis of
the global feature-relevance values r̄. In the compact analysis,
we further average the global relevance r̄ over each feature set
S1, . . . , S8 (Table I). In the fine-grained analysis, we simply
report the global relevance score r̄ for the top 44 features
(selected by aggregating the top 5 features with the highest
average relevance score for each class of samples).

The results are shown in Fig. 3. The compact analysis high-
lights the importance of permissions (S2) and suspicious API
calls (S7 group) in identifying malware. This is reasonable,
as the majority of malware samples require permissions to
perform specific actions, like stealing contacts and opening
SMS and other side communication channels. The fine-grained
analysis provides a more detailed characterization of the afore-
mentioned behavior, highlighting how each classifier learns
a specific behavioral signature for each class of samples. In
particular, malware families are characterized by their com-
munication channels (e.g., SMS and HTTP), by the amount
of stolen information and accessed resources, and by specific
application components or URLs (S3 and S8).

Finally, note that all classifiers tend to assign high relevance
to a very small set of features in each decision, both at a local
and at a global scale. Given that manipulating the content
of Android malware can be relatively easy, especially due to
the possibility of injecting dead code, this behavior highlights
the potential vulnerability of such classifiers. In fact, if the
decisions of a classifier rely on few features, it is intuitive that
detection can be easily evaded by manipulating only few of
them, as also confirmed in previous work [6], [8]. Conversely,
if a model distributes relevance more evenly among features,
evasion may be more difficult (i.e., require manipulating a
higher number of features, which may not be always feasible).
More robust learning algorithms for these tasks have been
proposed based exactly on this rationale, which has also a
theoretically-sound interpretation [8].

Another interesting point regards the transferability of eva-
sion attacks across different models, i.e., the fact that an attack
crafted against a specific classifier may still be successful with
high probability against a different one. From our analysis,
it is clear that in this case this property depends more on
the available training data rather than on the specific learning
algorithm: the three considered classifiers learn very similar
patterns of feature relevances, as clearly highlighted in Fig. 3,
which simply means that they can be evaded with very similar
modifications to the input sample.

V. CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK

In this paper, we provided a general approach to achieve
explainable malware detection on Android, applicable to any

B
en
ig
n

M
al
w
ar
e

Fa
ke
In
st
al
le
r

D
ro
id
Ku
ng
Fu

Pl
an
kt
on

O
pf
ak
e

G
in
ge
rM
as
te
r

B
as
eB
ri
dg
e

Ic
on
os
ys

Km
in

Fa
ke
D
oc

A
dr
d

G
ei
ni
m
i

D
ro
id
D
re
am

Li
nu
xL
ot
oo
r

M
ob
ile
Tx

G
ol
dD
re
am

S1
S2
S3
S4
S5
S6
S7
S8 20

16
12
8
4

0
4
8
12
16
20

B
en
ig
n

M
al
w
ar
e

Fa
ke
In
st
al
le
r

D
ro
id
Ku
ng
Fu

Pl
an
kt
on

O
pf
ak
e

G
in
ge
rM
as
te
r

B
as
eB
ri
dg
e

Ic
on
os
ys

Km
in

Fa
ke
D
oc

A
dr
d

G
ei
ni
m
i

D
ro
id
D
re
am

Li
nu
xL
ot
oo
r

M
ob
ile
Tx

G
ol
dD
re
am

S1
S2
S3
S4
S5
S6
S7
S8 20

16
12
8
4

0
4
8
12
16
20

B
en
ig
n

M
al
w
ar
e

Fa
ke
In
st
al
le
r

D
ro
id
Ku
ng
Fu

Pl
an
kt
on

O
pf
ak
e

G
in
ge
rM
as
te
r

B
as
eB
ri
dg
e

Ic
on
os
ys

Km
in

Fa
ke
D
oc

A
dr
d

G
ei
ni
m
i

D
ro
id
D
re
am

Li
nu
xL
ot
oo
r

M
ob
ile
Tx

G
ol
dD
re
am

S1
S2
S3
S4
S5
S6
S7
S8 20

16
12
8
4

0
4
8
12
16
20

B
en

ig
n

M
al

w
ar

e

Fa
ke

In
st

al
le

r

D
ro

id
Ku

ng
Fu

Pl
an

kt
on

O
pf

ak
e

G
in

ge
rM

as
te

r
B
as

eB
ri
dg

e
Ic

on
os

ys
Km

in
Fa

ke
D

oc
A
dr

d
G

ei
ni

m
i

D
ro

id
D

re
am

Li
nu

xL
ot

oo
r

M
ob

ile
Tx

G
ol

dD
re

am

READ_PHONE_STATE
READ_SMS

INSTALL_PACKAGES
SEND_SMS

BLUETOOTH
READ_HISTORY_BOOKMARKS (browser)

RECEIVE_SMS
INTERNET

INSTALL_SHORTCUT (launcher)
Jk7H.PwcD.SLYfoMdG

com.google.android.c2dm.C2DMBroadcastReceiver
android.provider.Telephony.SMS_RECEIVED

android.intent.category.LAUNCHER
android.intent.action.MAIN

android.intent.action.PHONE_STATE
android.intent.action.USER_PRESENT

android.intent.action.SIG_STR
android.intent.action.BOOT_COMPLETED

android/os/PowerManager$WakeLock;->release
android/webkit/WebView;->init

TelephonyManager;->getSubscriberId
INTERNET

ACCESS_NETWORK_STATE
READ_PHONE_STATE

TelephonyManager;->getSimOperator
SmsMessage;->getDisplayMessageBody

android/net/Uri;->parse
TelephonyManager;->getNetworkOperatorName

TelephonyManager;->getNetworkOperator
TelephonyManager;->getSubscriberId

com.apperhand.device.android.AndroidSDKProvider
SmsMessage;->createFromPdu

android/net/Uri;->fromFile
jackpal/androidterm/Exec;->close

system/bin/su
android/net/NetworkInfo;->getExtraInfo

Lorg/apache/http/client/methods/HttpPost
Ljava/io/IOException;->printStackTrace

java/lang/reflect/Method;->invoke
jackpal/androidterm/Exec;->setPtyWindowSize

lebar.gicp.net
smsreplier.net

mobile.tx.com.cn:8081
http://mobile.tx.com.cn:8081/client/reg.do

S2

S3

S4

S5

S6

S7

S8

20

16

12

8

4

0

4

8

12

16

20

B
en
ig
n

M
al
w
ar
e

Fa
ke
In
st
al
le
r

D
ro
id
Ku
ng
Fu

Pl
an
kt
on

O
pf
ak
e

G
in
ge
rM
as
te
r

B
as
eB
ri
dg
e

Ic
on
os
ys

Km
in

Fa
ke
D
oc

A
dr
d

G
ei
ni
m
i

D
ro
id
D
re
am

Li
nu
xL
ot
oo
r

M
ob
ile
Tx

G
ol
dD

re
am

android.permission.READ_PHONE_STATE
android.permission.READ_SMS

android.permission.INSTALL_PACKAGES
android.permission.SEND_SMS

android.permission.BLUETOOTH
com.android.browser.permission.READ_HISTORY_BOOKMARKS

android.permission.RECEIVE_SMS
android.permission.INTERNET

com.android.launcher.permission.INSTALL_SHORTCUT
Jk7H.PwcD.SLYfoMdG

com.google.android.c2dm.C2DMBroadcastReceiver
android.provider.Telephony.SMS_RECEIVED

android.intent.category.LAUNCHER
android.intent.action.MAIN

android.intent.action.PHONE_STATE
android.intent.action.USER_PRESENT

android.intent.action.SIG_STR
android.intent.action.BOOT_COMPLETED

android/os/PowerManager$WakeLock;->release
android/webkit/WebView;->init

android/telephony/TelephonyManager;->getSubscriberId
INTERNET

ACCESS_NETWORK_STATE
READ_PHONE_STATE

android/telephony/TelephonyManager;->getSimOperator
android/telephony/gsm/SmsMessage;->getDisplayMessageBody

android/net/Uri;->parse
android/telephony/TelephonyManager;->getNetworkOperatorName

android/telephony/TelephonyManager;->getNetworkOperator
android/telephony/TelephonyManager;->getSubscriberId

com.apperhand.device.android.AndroidSDKProvider
android/telephony/gsm/SmsMessage;->createFromPdu

android/net/Uri;->fromFile
jackpal/androidterm/Exec;->close

system/bin/su
android/net/NetworkInfo;->getExtraInfo

Lorg/apache/http/client/methods/HttpPost
Ljava/io/IOException;->printStackTrace

java/lang/reflect/Method;->invoke
jackpal/androidterm/Exec;->setPtyWindowSize

lebar.gicp.net
smsreplier.net

mobile.tx.com.cn:8081
http://mobile.tx.com.cn:8081/client/reg.do

S2

S3

S4

S5

S6

S7

S8

20

16

12

8

4

0

4

8

12

16

20

B
en
ig
n

M
al
w
ar
e

Fa
ke
In
st
al
le
r

D
ro
id
Ku
ng
Fu

Pl
an
kt
on

O
pf
ak
e

G
in
ge
rM
as
te
r

B
as
eB
ri
dg
e

Ic
on
os
ys

Km
in

Fa
ke
D
oc

A
dr
d

G
ei
ni
m
i

D
ro
id
D
re
am

Li
nu
xL
ot
oo
r

M
ob
ile
Tx

G
ol
dD

re
am

android.permission.READ_PHONE_STATE
android.permission.READ_SMS

android.permission.INSTALL_PACKAGES
android.permission.SEND_SMS

android.permission.BLUETOOTH
com.android.browser.permission.READ_HISTORY_BOOKMARKS

android.permission.RECEIVE_SMS
android.permission.INTERNET

com.android.launcher.permission.INSTALL_SHORTCUT
Jk7H.PwcD.SLYfoMdG

com.google.android.c2dm.C2DMBroadcastReceiver
android.provider.Telephony.SMS_RECEIVED

android.intent.category.LAUNCHER
android.intent.action.MAIN

android.intent.action.PHONE_STATE
android.intent.action.USER_PRESENT

android.intent.action.SIG_STR
android.intent.action.BOOT_COMPLETED

android/os/PowerManager$WakeLock;->release
android/webkit/WebView;->init

android/telephony/TelephonyManager;->getSubscriberId
INTERNET

ACCESS_NETWORK_STATE
READ_PHONE_STATE

android/telephony/TelephonyManager;->getSimOperator
android/telephony/gsm/SmsMessage;->getDisplayMessageBody

android/net/Uri;->parse
android/telephony/TelephonyManager;->getNetworkOperatorName

android/telephony/TelephonyManager;->getNetworkOperator
android/telephony/TelephonyManager;->getSubscriberId

com.apperhand.device.android.AndroidSDKProvider
android/telephony/gsm/SmsMessage;->createFromPdu

android/net/Uri;->fromFile
jackpal/androidterm/Exec;->close

system/bin/su
android/net/NetworkInfo;->getExtraInfo

Lorg/apache/http/client/methods/HttpPost
Ljava/io/IOException;->printStackTrace

java/lang/reflect/Method;->invoke
jackpal/androidterm/Exec;->setPtyWindowSize

lebar.gicp.net
smsreplier.net

mobile.tx.com.cn:8081
http://mobile.tx.com.cn:8081/client/reg.do

S2

S3

S4

S5

S6

S7

S8

20

16

12

8

4

0

4

8

12

16

20

Fig. 3. Mean relevance scores computed w.r.t. benign, malware and the top-15 malware families (Tab. III) for SVM (left), SVM-RBF (middle) and RF (right).
The compact representation (top) reports the mean relevances for the feature sets S1, . . . , S8 (Tab. I). The fine-grained representation (bottom) reports the
mean relevances for the top 44 features with the highest average value per family. Positive (negative) relevances denote malicious (benign) behavior.

black-box machine-learning model. Our explainable approach
can help analysts to understand possible vulnerabilities of
learning algorithms to well-crafted evasion attacks along with
their transferability properties, besides providing a local and
global understanding of how a machine-learning model makes
its decisions. We plan to analyze also different strategies
to provide global explanations. In fact, averaging can po-
tentially soften the contribution of features that are highly
relevant only for few samples. Another interesting issue is
how to choose the surrogate model to provide explanations
for non-differentiable models. Some theoretical results show
that, under certain assumptions, some learning algorithms can
provide similar decision functions; e.g., nonlinear SVMs may
reliably approximate random forests [19]. Nevertheless, it is
still required to investigate how different surrogate models
impact the explanations provided by our approach. These are
all relevant issues towards the development of interpretable
models, as required by the novel European General Data
Protection Regulation (GDPR) [11]. The right of explanation
stated by GDPR imposes to develop models that are transpar-
ent with respect to their decisions. We believe that this work
is a first step towards this direction.

ACKNOWLEDGMENTS

This work was partly supported by the EU H2020 project
ALOHA, under the European Union’s Horizon 2020 research
and innovation programme (grant no. 780788), and by the PIS-
DAS project, funded by the Sardinian Regional Administration
(CUP E27H14003150007).

REFERENCES

[1] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck. Drebin:
Efficient and explainable detection of android malware in your pocket.
In Proc. 21st NDSS. The Internet Society, 2014.

[2] M. Backes and M. Nauman. LUNA: quantifying and leveraging
uncertainty in android malware analysis through Bayesian machine
learning. In EuroS&P, pp. 204–217. IEEE, 2017.

[3] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen,
and K.-R. Müller. How to explain individual classification decisions. J.
Mach. Learn. Res., 11:1803–1831, 2010.

[4] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli. Evasion attacks against machine learning at
test time. In ECML, vol. 8190, LNCS, pp. 387–402. Springer, 2013.

[5] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. ArXiv, 2018.

[6] A. Calleja, A. Martin, H. D. Menendez, J. Tapiador, and D. Clark.
Picking on the family: Disrupting android malware triage by forcing
misclassification. Expert Systems with Applications, 95:113 – 126, 2018.

[7] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu. Stormdroid: A
streaminglized machine learning-based system for detecting Android
malware. In ASIA CCS, pp. 377–388, 2016. ACM.

[8] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli. Yes, machine learning can be
more secure! A case study on Android malware detection. IEEE Trans.
Dependable and Secure Computing, In press.

[9] F. Doshi-Velez and B. Kim. Towards A Rigorous Science of Inter-
pretable Machine Learning. ArXiv, 2017.

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. In ICLR, 2015.

[11] B. Goodman and S. Flaxman. European Union regulations on algorith-
mic decision-making and a “right to explanation”. ArXiv, 2016.

[12] P. W. Koh and P. Liang. Understanding black-box predictions via
influence functions. In ICML, 2017.

[13] Z. C. Lipton. The mythos of model interpretability. In ICML Workshop

on Human Interpretability in Machine Learning, pp. 96–100, 2016.
[14] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?:

Explaining the predictions of any classifier. In KDD, pp. 1135–1144,
2016. ACM.

[15] P. Russu, A. Demontis, B. Biggio, G. Fumera, and F. Roli. Secure kernel
machines against evasion attacks. In AISec, pp. 59–69, 2016. ACM.

[16] R. Sommer and V. Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In IEEE Symp. Security and
Privacy, pp. 305–316, 2010. IEEE CS.

[17] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. In ICLR, 2014.

[18] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. In ICLR, 2014.

[19] L. Breiman. Some infinity theory for predictor ensembles. Technical
Report 579, Statistics Dept. UCB, 2000.

