
Detecting Misuse of Google Cloud Messaging
in Android Badware

Mansour Ahmadi
Department of Electrical and

Electronic Engineering
University of Cagliari, Italy

mansour.ahmadi@diee.
unica.it

Battista Biggio
Department of Electrical and

Electronic Engineering
University of Cagliari, Italy

battista.biggio@diee.unica.it

Steven Arzt
Technische Universitat
Darmstadt, Germany
steven.arzt@ec-

spride.de

Davide Ariu
Department of Electrical and

Electronic Engineering
University of Cagliari, Italy

davide.ariu@diee.unica.it

Giorgio Giacinto
Department of Electrical and

Electronic Engineering
University of Cagliari, Italy
giacinto@diee.unica.it

ABSTRACT
Google Cloud Messaging (GCM) is a widely-used and reli-
able mechanism that helps developers to build more efficient
Android applications; in particular, it enables sending push
notifications to an application only when new information
is available for it on its servers. For this reason, GCM is
now used by more than 60% among the most popular An-
droid applications. On the other hand, such a mechanism
is also exploited by attackers to facilitate their malicious
activities; e.g., to abuse functionality of advertisement li-
braries in adware, or to command and control bot clients.
However, to our knowledge, the extent to which GCM is
used in malicious Android applications (badware, for short)
has never been evaluated before. In this paper, we do not
only aim to investigate the aforementioned issue, but also
to show how traces of GCM flows in Android applications
can be exploited to improve Android badware detection. To
this end, we first extend Flowdroid to extract GCM flows
from Android applications. Then, we embed those flows in a
vector space, and train different machine-learning algorithms
to detect badware that use GCM to perform malicious ac-
tivities. We demonstrate that combining different classifiers
trained on the flows originated from GCM services allows us
to improve the detection rate up to 2.4%, while decreasing
the false positive rate by 1.9%, and, more interestingly, to
correctly detect 14 never-before-seen badware applications.

CCS Concepts
•Security and privacy→Malware and its mitigation;
Mobile and wireless security; •Computing method-
ologies → Supervised learning by classification;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPSM’16, October 24 2016, Vienna, Austria
© 2016 ACM. ISBN 978-1-4503-4564-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2994459.2994469

Keywords
Google Cloud Messaging, Android Security, Adware, Botnet,
Classification, Badware Detection, Malicious

1. INTRODUCTION
Mobile applications are often developed as client interfaces

for accessing services provided by remote servers. In this
setting, one of the challenges for developers is to timely
notify mobile applications, i.e., the clients, on any event
that updates the status of the application; e.g., messaging
applications like WhatsApp need to notify their clients when
they receive a new message. It is clearly computationally
convenient that an application is notified only when new
information is available on its server (i.e., through a push
notification), rather than frequently checking if there is a
new message (i.e., using a pull technique). One of the most
used services that allows implementing push notifications for
Android applications is Google Cloud Messaging (GCM).

Thanks to its efficiency and simplicity, GCM has also at-
tracted the attentions of attackers. In fact, there are prelim-
inary evidences of the use of this library in several unwanted
applications like adware and bots, which we generically refer
to here as badware, based on the ENISA threat taxonomy [1].
One possible case of GCM misuse is when it is transitively
used in adware as many advertisement libraries (adlibrary)
use GCM. There is a belief that this type of software is not
exactly badware, and the boundary between adware and free
benign applications using built-in adlibraries is rather blurred
than clearly defined [7]. However, users do not tend to have
adware in their mobile devices. Applications displaying ads
are often undesired, because they drain battery life, consume
unnecessary bandwidth, and can slow down the app [21, 32].
In addition, they may also exhibit sophisticated malicious
behaviors like rooting the device.1 In addition to being used
in adware, GCM exhibits a number of desirable properties
for attackers, rather than pull services like HTTP, to be
engaged as a command and control (C&C) channel. The
potential misuse of GCM in botnets was reported by the

1http://www.androidauthority.com/new-android-adware-
nearly-impossible-to-remove-654197/

http://dx.doi.org/10.1145/2994459.2994469

security community in 2012 [46], but the first real variant of
botnet exploiting GCM for C&C was reported by Kaspersky
in 2013 [23]. Less than a year later, another report by An-
droTotal discussed the interest of attackers to exploit GCM
channels in a malicious manner [5]. We discuss the GCM
mechanism in more detail in Section 2, along with examples
of how it can be exploited in malicious Android applications.

The only existing way to thwart GCM-based attacks is
blocking the app’s GCM registration ID at the GCM servers.
However, this requires one to first detect the badware channel,
and no solution to assess the degree of suspiciousness of GCM
channels has been developed yet. One possibility could be
to monitor network traffic of GCM channels, and detect
anomalous behaviors. Although such a solution may enable
detection of 0-day (i.e., never-before-seen) botnet channels
while operating at the server side, GCM messages might
be encrypted to circumvent tracking and detection. This
motivates our proposal of a client-side solution, presented
in Section 3, in which we model the functionality of GCM
regardless of the content of messages, to be effective also
against message encryption. In Section 4, we empirically
show that characterizing GCM services is useful to achieve a
more accurate detection of bot clients, as well as unwanted
adware. Our results show that the detection rate can be
increased up to 2.4%, while the false positive rate can be
decreased up to 1.9%.

To summarize, this paper provides the following two main
contributions.

(i) We build a model of GCM communications to evaluate
the extent to which this popular mechanism is misused
in Android applications. To this end, we provide a flow
analysis for GCM services to be able to automatically
detect flows originated from GCM entrypoints.

(ii) We show how the extracted flows from GCM services
can help one to more effectively detect badware using
GCM, where GCM contributes in the realization of the
malicious activities. Our approach for badware detec-
tion is based on machine learning and, in particular,
on a multiple classifier system (MCS) architecture.

We conclude our paper by discussing related work (Section 6)
and future research directions (Section 7).

2. BACKGROUND
To better understand the whole GCM mechanism and how

this service can be misused by an attacker, in this section we
first discuss how GCM works, and then report an example
of a dissected GCM badware.

2.1 Google Cloud Messaging
Google announced Cloud-to-Device-Messaging (C2DM)

system in Google I/O, 2010 as a push mechanism for An-
droid applications. It gradually became more efficient and
was renamed to Google Cloud Messaging (GCM) in Google
I/O 20122. The new version of GCM has received a lot
of improvement such as being cross-platform (support iOS
and Chrome) as well as having simplified APIs, and was
re-branded to Firebase Cloud Messaging (FCM) in Google
I/O 2016. Based on reports presented in Google I/O 2016,
Google receives around 2 millions queries per second, and
more than 1 million apps have been registered by GCM.
2https://developers.google.com/android/c2dm/

App servers

App

GCM lib

Message
queue

GCM servers

Message
queue

3. Send Registeration Id 4. Send a message

5. GCM servers deliver the message

1. App requests registeration

2. GCM Servers send registeration Id

Figure 1: Google Cloud Messaging Mechanism.

Figure 1 shows how the whole mechanism works. First, the
application needs to register itself to the GCM servers. After
it receives a registration ID from the GCM servers, it sends
the registration ID to its server for further communications.
Whenever the App server needs to notify its clients, it can
send data up to 4KB to a specific registration ID or a group
of IDs through the GCM servers. When no Internet access
is available on the client device, the messages accumulate in
a queue on the server, and synchronize with the client device
when it returns online. The connection protocol between App
servers and GCM servers can be either HTTP or XMPP3.
GCM provides a set of APIs for sending messages from servers
to applications efficiently and reliably. These APIs can be
categorized into 4 classes: Registration, an application needs
a registration ID to communicate; Send, server can send
messages to a particular device (registration ID); Multi-cast,
it is possible to send messages to thousands recipients with
a single request; Time to live, setting TTL on each request
allows GCM to know when to expire a message.

2.2 GCM Badware
We describe the two possible cases of use of GCM in

badware, namely, bot clients and adware, to better motivate
how modeling GCM services can be beneficial in a detection
system.

Botnet. Many Android bot clients use unencrypted chan-
nels like HTTP to accept messages from command and con-
trol bot masters [6]. However, the bot masters can also
take advantage of secure popular public services for attacks.
Three types of secure services that are frequently exploited
by Android bot clients are email over SSL, GCM, and social
networks (e.g., Twitter) [40]. By using these services, attack-
ers can launch C&C attacks in a secure way, which is not
easily detectable by normal TCP and HTTP traffic analysis.
Furthermore, defenders cannot employ simple server black-
listing to mitigate such threats, because the email or GCM
servers are used for badware as well as benign applications.

To better explain the misuse of GCM for C&C purposes,

3It is a persistent, asynchronous, and bidirectional connec-
tion.

Figure 2 presents a part of a decompiled Maxit backdoor
sample 4. It shows that after the bot client receives a GCM
message, the content of the message is accessible through
the Intent parameter of onMessage method (step 1). Then,
the data is retrieved from the Intent by getExtras method
and passed to Process_Message method which separates the
command (step 2, 3) and executes consequent actions based
on the command. After doing the action, the bot client sends
an SMS to the attacker through sendTextMessage (step 5),
which is located in SendSMSNow method (step 4). The SMS
contains the received original GCM message, a retrieved data
from SharedPreferences (e.g., IMEI) and the package name,
which are split by “|". Since the attacker might receive
many SMS messages, one probable answer to why the bot
client sends the original GCM message along with the other
information is to make the content of SMS easier for attacker
to comprehend. It is obvious that as the received GCM
message goes directly to sendTextMessage, there is an explicit
data flow between the Intent parameter of onMessage in
GCMIntentService and the sendTextMessage API. However, if
the action is decided based on an if condition, the flow would
be implicit. For example, in (step +), if the command equals
to IMEI, the malware retrieves the identification number
of the device from SharedPreferences so that there is an
implicit flow between onMessage and getSharedPreferences.

Adware. Opposite of the aforementioned deliberate mis-
use of GCM, it might happen that GCM is exploited by
badware indirectly. For instance, many adlibraries such as
Revmob, Airpush, Leadbolt, Domob and Cauly [2] use GCM
to notify users whenever a new advertisement has to be
shown. As the purpose of adware is showing advertisement
to receive benefits, these adlibraries might be embedded in
adware to display unwanted ads when the user is online. As
a result, GCM is unintentionally exploited as part of such
malicious activities.

3. SYSTEM DESIGN
The architecture of the proposed system is depicted in

Figure 3. First, we look into Android applications request-
ing GCM permission. Second, Flowdroid is used to extract
the flows that are originated from GCM. As Flowdroid did
not natively analyze GCM flows, we adapted it in order to
support GCM callbacks (§3.1). Third, the output of Flow-
droid is used to extract a number of features that describe
the explicit flows. These features are subdivided into two
sets, namely GCM and Non-GCM categories based on the
corresponding services (§3.2). Accordingly, a classification
function can be learnt by associating each flow to the type
of applications it has been extracted from, i.e., badware or
goodware. Classification is performed in different ways to
verify the effectiveness of GCM features (§3.3). In the clas-
sification step, we build different models where each model
provides a likelihood (between 0 and 1) denoting the degree
of maliciousness of an app, which is subsequently thresh-
olded to make the final decision on whether the application
is badware or not.

3.1 Modeling GCM service
GCM base classes were not supported in FlowDroid [8] be-

cause GCM is a part of Google Play Services, and not of the
Android Framework. Hence, in order to handle data flows in

4Badware’s MD5: 157febb16d16e8bcb5ba6564a2f7d320

GCM classes, lifecycles of GCM classes have to be modeled in
FlowDroid. Two common classes that have been employed in
many applications in the past, are GCMBaseIntentService and
GCMListenerService. The FirebaseMessagingService class
has been introduced recently so it takes some time to be
integrated in some applications. The GCMBaseIntentService
class has been deprecated since September 2014, but there
are still a lot of applications that have implemented this class.
The GCM classes and methods are listed in Table 1. The
methods are used for different purposes like registration, error
handling, and message reception. The application needs to
declare a GCMReceiver, which is a kind of BroadcastReceiver
so that it delivers messages to GCM base classes. Two
important methods that are called during receiving mes-
sages are onMessage in the GCMBaseIntentService class, and
onMessageReceived in the GCMListenerService. Data flows
from parameters of these services can represent command-
action behaviors.

To model lifecycles, FlowDroid builds a custom entry point.
This entry point is essentially a main() method that emulates
the behavior of the Android operating system and framework.
As a consequence, the data flow tracker itself can process
the app as a standard Java program with a main() method,
albeit it still uses the Android framework through calls to
library methods. In the basic version of FlowDroid, this
dummy main method contains calls the lifecycle methods of
activities, services, content providers, and broadcast receivers.
Our extension adds calls to the specific methods of the GCM
service classes.

One could argue that the GCM base classes such as GCM
Receiver are implemented as normal classes inherited from
BroadcastReceiver. Therefore, correctly modeling broadcast
receivers would be sufficient, because the implementation of
GCMReceiver already fully specifies how and when methods
such as onMessageReceived are called. With this approach,
the GCM framework would be treated as part of the app and
would be analyzed together with it. For performance reasons,
we, however, chose a different approach. We treat the GCM
framework classes as black boxes and instead add explicit
models for their interfaces. In other words, we consider the
GCM framework as a part of the Android operating system
and abstract away from it, effectively reducing the size and
complexity of the code to be analyzed.

3.2 Feature Extraction
Since FlowDroid supports detecting the desired flows, as

a next step, proper sources and sinks should be provided
for, and then run on various applications to extract existing
flows. There are two possible ways that source of flows can be
defined, i.e., parameters of callbacks, and APIs that retrieve
information. As far as we aim to understand what actions are
performed when the GCM callbacks are invoked, we consider
callbacks as sources in our evaluation to be able to show
the power of flows originated from GCM callbacks compared
to the rest of Android callbacks. It is worth to mention
that, although considering source APIs can provide more
information about the semantics of applications, it makes
the feature extraction step much slower so we avoided to
use them in the proposed system. For sinks, we consider all
sink APIs proposed by SUSI [34], which were extracted from
Android 4.2 and contain 8,287 APIs.

After the flows are extracted by FlowDroid, they are
mapped to a feature vector in which features are flows and

package com.mxmobile.mxfdgoldrate;

import

android.telephony.SmsManager;

...

public class GCMIntentService

extends GCMBaseIntentService

{

...

protected void

onMessage(Context

paramContext ,

1: Intent paramIntent)

{

...

Bundle localBundle =

paramIntent.getExtras ();

if (localBundle != null) {

2:

Process_Message(paramContext ,

paramIntent ,

localBundle.getString (" message "));

}

}

public void

SendSMSNow(String

paramString1 , String

paramString2 , Context

paramContext)

{

...

5:

SmsManager.getDefault ().sendTextMessage(

paramString1 , null , paramString2 ,

paramContext , null);

}

private void

Process_Message

(Context paramContext ,

Intent paramIntent ,

String paramString)

{

...

Object

localObject2 =

paramIntent.substring (8).trim().

split("\\|");

3: String cmd =

localObject2 [1]. trim();

...

(+) if

(cmd.equalsIgnoreCase("IMEI"))

{

Object

localObject4 =

paramContext.getSharedPreferences (...);

str3 =

((SharedPreferences)localObject4).

getString("user_imei_id"...);

localObject4 =

((SharedPreferences)localObject4).

getString("Package_Name"...);

...

4:

SendSMSNow (... , ... +

str3 + "|"

+

paramString

+ "|" +

(String)localObject4 ,

paramContext);

}

...

}

}

Figure 2: A part of Backdoor.AndroidOS.Maxit.a badware, which uses GCM for C&C.

Modified
FlowDroid

Modelling
GCM services

lifecycle

Sources:Entrypoints
Sinks:APIs

Apps with GCM
Permission

Pattern
Extraction

Classifier 1

Classifier 2

Classifier 3

Weighted
Mean

Gate
Classifier

Final
Decision

Explicit
Flows

Likelihood
+

Weight

Likelihood

Non-

GCM

GCM

GCM+

Non-

GCM

Figure 3: Overview of our approach.

Table 1: GCM services lifecycle.

Base Class Methods

GCMBaseIntentService

void onDeletedMessages(android.content.Context,int)
void onError(android.content.Context,java.lang.String)

void onMessage(android.content.Context,android.content.Intent)
void onRecoverableError(android.content.Context,java.lang.String)

void onRegistered(android.content.Context,java.lang.String)
void onUnregistered(android.content.Context,java.lang.String)

GCMListenerService
(FirebaseMessagingService)

void onDeletedMessages()
void onMessageReceived(java.lang.String,android.os.Bundle)

void onMessageSent(java.lang.String)
void onSendError(java.lang.String,java.lang.String)

their values are the total number of each flow in an appli-
cation. In other words, we count how many flows there
are between a specific pair of source and sink. In flows,
the sources are the parameters of callbacks and the sinks
are the name of APIs as well as their corresponding pack-
age. For example, in the sample in Figure 2, there is an
explicit flow (by following the red lines) in which the source
is android.content.Intent in onMessage method, and the
sink is sendTextMessage in SmsManager package. Therefore,
the feature is in the following format:

onMessage(android.content.Intent) ;

SmsManager.sendTextMessage

We name such features as “Complete Source/Sink” in the
evaluation section(§4.2). However, It is common that obfus-
cation techniques [36, 29] affect the name of some callbacks.
Simple method renaming is applied by ProGuard, a popular
tool shipped with the Android SDK. For example, we ob-
serve the fact in our experiments that onMessage callback has
different names such as “a” or “nybkaxzg” in some applica-
tions, but the parameters type like android.content.Intent
are intact. In addition, the sink might be package specific like
startActivity API from com.qihoo.psdk.app.QStatActivity
which is the name of an activity in an App. Therefore, we
represented the flows to a short format in which we just
consider the parameters of callbacks from the sources and
API names from the sinks. Note that API method names are
usually not affected by obfuscation techniques. So, for the
same above example, the feature is in the following format:

android.content.Intent ; sendTextMessage

We call this type of features as “Abstract Source/Sink”.
Although the latter consideration looks loosing some informa-
tion (e.g., all of onError, onRegistered or onUnregistered
methods have java.lang.String parameter), we show that
they can achieve better result using a smaller number of
features compare to “Complete Source/Sink” representation.
The underlying reason is that using a more compact (and less
noisy) feature representation typically mitigates the so-called
problem of overfitting, facilitating the task of learning an
accurate classification function [11].

To evaluate the effectiveness of GCM features, we divide
the features into two sets, i.e., GCM and non-GCM. If a flow
is originated from GCM callbacks, we consider it as a GCM
feature, otherwise, as a non-GCM feature. The following
matrix shows an example of the final set of feature vectors,
where each row is a feature vector for a goodware/badware,
and each column is the frequency of a feature. To separate the
features, we prefix them with “g” and “ng”, which respectively
refer to GCM and non-GCM flows.

g src1 snk1 ... ng src2 snk1 ng src3 snk4
B1 3 ... 1 0
B2 2 ... 4 1
...
G1 1 ... 0 0
...


3.3 Classification

Regarding the nature of the task at hand, binary classi-
fication algorithms are powerful options to help us to dis-
criminate badware from benign applications. Over the past
years, a large number of classification techniques have been
proposed by the scientific community, and the choice of the
most appropriate classifier for a given task is often guided

by previous experience in different domains, as well as by
trial-and-error procedures. However, some classifiers like
SVM and ensemble decision trees (e.g., Random Forest and
Extra Trees [18]) have shown high performances in a variety
of tasks [16].

To simplify the learning task and reduce the risk of over-
fitting, we exploit feature selection to reduce the feature set
size by removing irrelevant and noisy features from our sets.
In particular, as done in [4], we compute the so-called mean
decrease impurity score for each feature, and retain those
features which have been assigned the highest scores.5

We combine the obtained decisions of single models (see
Fig. 3) using a multiple classifier system (MCS) [31, 24]. The
underlying reason is that MCSs do not only often improve
classification accuracy with respect to the combined clas-
sifiers, but also provide some degree of robustness against
evasion attempts [19, 10]. One of the simplest and widely-
used MCS fusion rule is the weighted average:

Lc =

∑n
i=1 (Wi × Lci)∑n

i=1 Wi
, (1)

where n is the number of single classifiers, L is the likelihood
of each single classifier, W is a weight assigned to a single
classifier, and c refers to each class label. In this approach,
a specific weight is assigned to each single classifier output,
usually based on the performance of the classifier, and each
weight is multiplied by the predicted class likelihood obtained
by the classifier. Finally, the class labels are assigned based
on the average of the achieved weighted likelihood. Another
common MCS technique is passing the likelihood of single
models to a gate classifier to make the final decision, which
we call it two-tier classification technique. The gate classifier
is thus trained in the same way as the flow classifiers, but its
input is a feature vector whose components are the output
likelihoods of the individual classifiers.

Overall, we build one classifier trained on the GCM fea-
tures, one classifier trained on the non-GCM features, and a
third classifier where all the features, GCM and non-GCM,
are used. We observed a degree of complementarity among
classifiers, as just a portion of the misclassified samples by one
of the classifiers, is misclassified by the other classifiers, the
rest of them being correctly classified by the other classifiers.
Hence, this motivates the fusion of classification decisions by
MCS techniques to combine the prediction at the score level.
This fusion makes the final decision unbiased between the
individual classifiers, which helps improving the final decision.
Therefore, we combine the predictions of single classifiers
with the weighted mean and the two-tier techniques.

4. EXPERIMENTAL ANALYSIS
In this section, we address the following research questions:

• How much discriminatory power do flows from GCM
callback sources add to a badware classifier in contrast
to only using non-GCM sources (§4.2)?

• Is the approach able to predict never-before-seen bad-
ware (§4.2.1)?

Before addressing these questions, we discuss the data and
the experimental settings used in our evaluation (§4.1).

5Note that this technique is often referred to also as Gini
impurity or information gain criterion.

4.1 Experimental Setup
To evaluate our approach, we have collected more than

15,000 goodware and 15,000 badware apps from McAfee
and VirusTotal6 sources. The McAfee dataset has been
released to the authors on the basis of a research agreement
during the period from 2014 to 2016. However, all of the
gathered samples are first seen by VirusTotal between 2011
and early 2016. Since this paper focuses on analyzing the
effects of modeling GCM data flows on badware detection,
we filter out all apps that do not use GCM. We consider
an app to use GCM if it uses the com.google.android.c2dm
.permission.RECEIVE permission. We found that slightly less
than 10% of our initial set of apps use GCM and were retained.
However, checking whether the GCM permission is present is
not sufficient, because the app might be overprivileged [15].
Therefore, as a complementary check, we discarded all those
of applications that did not have at least one flow from a
GCM-related source, i.e., a parameter of a GCM callback
method. To obtain the flows, we ran FlowDroid for up to
10 minutes per app on a server with 64 Intel Xeon E5-4560
processor cores running at 2.7 GHz and 1 TB of memory.
Note that we limited the maximum heap size allotted to
FlowDroid to 250 GB. If the analysis did not complete within
this time budget, the app was discarded as well. With these
constraints, 1,058 benign and 1,044 badware apps remained
for further analysis. Based on the naming convention7 by
VirusTotal, half of the badware are adware, and the rest are
trojan.

We evaluate our approach on this set of samples through a
10-fold cross validation, to provide statistically-sound results.
In this validation technique, samples are divided into 10
groups, called folds, with almost equal sizes. The prediction
model is built using 9 folds, and then it is tested on the
final remaining fold. The procedure is repeated 10 times on
different folds to be sure that each data point is evaluated
exactly once. For the data analysis, we used a laptop with a
2 GHz quad-core processor and 8GB of memory. The whole
data analysis code was written in Python, and the main
employed helper library is scikit-learn.8

Two metrics that are used for evaluating the performance
of our approach are the False Positive Rate (FPR) and
the True Positive Rate (TPR). FPR is the percentage of
goodware samples misclassified as badware, while TPR is the
fraction of correctly-detected badware samples. A Receiver-
Operating-Characteristic (ROC) curve reports TPR against
FPR for all possible decision thresholds.

4.2 Results
To better understand the effectiveness of our approach, we

evaluate it on the set of Android applications described in
Section 4.1. To recap the overall approach, we need three
single classifiers to make three models on GCM flows, Non-
GCM flows and the combination of GCM and Non-GCM
flows. As a first step to better motivate the selection of single
classifiers, we use all the three well-performed classifiers,
namely SVM, Random Forest and Extra Trees (§3.3) to make
five models (three single models plus two MCS models) to see
which one provides a better performance. As a result, Extra
Trees achieved the higher area under ROC curve so that we

6http://www.virustotal.com
7https://github.com/ManSoSec/Auto-Malware-Labeling
8http://www.scikit-learn.org

select it as the main classifier for the first step of classification
(see Figure 4). As a consequent step, two MCS techniques,
namely weighted mean (MCS-WM) and two-tier (MCS-TT)
(§3.3) are applied to improve the performance. For the MCS-
WM, based on the performance of single classifiers, we assign
weights of one, two and three to GCM, Non-GCM and the
combination of GCM & Non-GCM models respectively. For
MCS-TT, the output of single classifiers are passed to a gate
classifier, which is SVM in our approach.

Our results are summarized in Table 2. To better discuss
what we explained in Section 3.2 about the feature repre-
sentation, we provide two sets of evaluations on “abstract
source/sink” and “complete source/sink”. In the “Measures”
column, “# Features” shows the number of features used
for classification while the numbers in parenthesis refer to
the number of selected features. The value of each “FPR” is
reported both in terms of the percentage, and in terms of the
total number of misclassified goodware (in parenthesis). As
is shown in the table, considering GCM-based flows alone is
not a proper replacement for a traditional data flow analysis
based on non-GCM flows. This is simply because GCM
flows represent a small portion of the application behavior.
Nonetheless, reported results clearly show that adding GCM
flows to the normal flow set containing the non-GCM data
flows can be helpful in detecting badware using GCM as
part of the malicious behavior. In fact, when we combine
GCM features with non-GCM features, they improve the
performance, compared to when GCM features are ignored.
In the case in which the features (GCM and non-GCM) are
stacked, FPR decreases 1% and TPR is improved about 2%.
Moreover, the improvement is more observable in the case
of MCS-WM in which FPR and TPR respectively recover
about 1.9% and 2.4%. In the case of MCS-TT, FPR decreases
more, namely 2.2% while TPR has a small improvement of
1.2%. While these numbers seem small, static analyses on
Android apps are usually performed on a very large scale,
e.g., on complete app stores. If you consider the Google Play
Store which contains over 2 million applications, improving
the detection rate by 2.4% means that more than 24,000
new, previously undetected pieces of malware are discovered.
Lowering the FPR by 1.9% means that 19,000 applications
less are flagged as potentially malicious and, consequently,
no longer need to be reviewed by human security specialists.
On this scale, our proposed improvements greatly improve
the state-of-the-art in Android app scanning.

Although there are still some misclassified samples (§4.2.1),
we could successfully detect some bot samples based on
GCM channel that were not tagged as malware by just
relying on Non-GCM flows. Last but not least, the results by
the proposed “abstract source/sink” features are preferable
over “complete source/sink”, because they need to consider
a significantly lower number of features and can thus be
computed more efficiently.

4.2.1 Misclassified Samples
We focus here on the proposed MCS architecture, which

achieved the best results, and investigate some of the reasons
behind its classification errors. As a first step, we checked
again the groundtruth labels of all samples by VirusTotal
three month after we gathered the last set of samples in our
dataset and assigned a new groundtruth. In this way, we built
the model with the original groundtruth and then checked the
class of misclassified samples with the new groundtruth. In-

http://www.virustotal.com
https://github.com/ManSoSec/Auto-Malware-Labeling
http://www.scikit-learn.org

0.0 0.05 0.1 0.15 0.2 0.25 0.3

FPR

0.7

0.75

0.8

0.85

0.9

0.95

1.0

T
P

R

Model

Gcm

Gcm & Non-Gcm

Mcs-Tt

Mcs-Wm

Non-Gcm

(a) ROC of Extra Trees

0.0 0.05 0.1 0.15 0.2 0.25 0.3
FPR

0.7

0.75

0.8

0.85

0.9

0.95

1.0

T
P

R

Model

Gcm

Gcm & Non-Gcm

Mcs-Tt

Mcs-Wm

Non-Gcm

(b) ROC of Random Forest

0.0 0.05 0.1 0.15 0.2 0.25 0.3

FPR

0.7

0.75

0.8

0.85

0.9

0.95

1.0

T
P

R

Model

Gcm

Gcm & Non-Gcm

Mcs-Tt

Mcs-Wm

Non-Gcm

(c) ROC of SVM

Figure 4: ROC curves of different classifiers. The best result was achieved by Extra Tree classifier.

Table 2: Classification results of extra tree after feature selection on a set of 1058 benign and 1044 malicious apps.

Measures
Single Classifier on Flows Multiple Classifiers

GCM Non-GCM Non-GCM + GCM Weighted Mean Two-Tier
Abstract Source/Sink : Parameter ; API

Features 498 (74) 7,539 (1,162) 8,037 (1,215) - 6
TPR 89.37% 90.71% 92.72% 93.10% 91.95%
FPR 9.735%(103) 6.049%(64) 5.009%(53) 4.159%(44) 3.781%(40)

Complete Source/Sink : Method.Parameter ; Package.API
Features 3,322 (452) 36,219 (3,892) 39,541 (4,561) - 6

TPR 89.94% 91.19% 92.53% 93.10% 92.53%
FPR 11.437%(121) 6.805%(72) 5.482%(58) 4.537%(48) 3.686%(39)

terestingly, we noticed that 4 out of 72 misclassified badware
were not labeled as malicious based on the new groundtruth.
Moreover, 14 out of 44 misclassified goodware are labeled
as badware based on the new groundtruth where all of the
14 samples are labeled as adware. So based on the new
groundtruth, we classified 18 (4+14) unknown samples cor-
rectly. Among the rest of misclassified badware, 32 of them
are adware, and the rest are trojan. The misclassified be-
nign samples need further analysis as there might be some
other 0-day badware among them because there are many
samples in our analysis from 2016. Another source of mis-
classification can be the use of obfuscation techniques like
dynamic code loading, multi-level reflection, JavaScript and
packing. We did not address those techniques in this paper
as the main focus of this paper is modeling GCM services as
complementary features.

Furthermore, we explored the features that might con-
tribute the most in the misclassification by computing the
median of the feature values in both the sets of correctly-
classified and misclassified samples. Some of the features
with the highest difference in the median between the two
sets are summarized in Table 3. The table shows how the
classifier might be misled by reducing or adding a specific
flow. To point out some of the flows, the ones from GCM
methods to notify and Log.v APIs have higher values in
the undetected malware and lower values in the misclassified
goodware. It is worth mentioning that the total number of
flows alone cannot be representative of the class of applica-
tions because both the goodware and badware with almost
the same number of flows are present in our dataset (see
Figure 5). However, there are some goodware that contain
higher number of flows and the fact is observable in the figure
in the range of 103 and 104.

Table 3: Features that contribute the most in misclassifica-
tion. Minus/plus refers to reduction/addition of a feature.

+/- Feature
From correctly-classified goodware to false positives
+ non-GCM : android.content.Intent ; putExtra

+ non-GCM : android.os.Bundle ; putString

+ non-GCM : android.os.Bundle ; onCreate

- GCM : android.content.Context ; notify

- GCM : android.content.Context ; v

From true positives to undetected badware
+ GCM : android.content.Context ; notify

+ GCM : android.content.Context ; v

- non-GCM : android.os.Bundle ; onCreate

- non-GCM : android.content.Intent ; putExtra

- non-GCM : android.view.KeyEvent ; onKeyDown

4.3 Discriminative Patterns
To be more informative, it is worth describing some of the

important GCM features that contributed the most in the
classification. Figure 6 shows the top 20 sink APIs that are
performed after a GCM message received in the device and
the message in a way passes to those APIs. Each of those
APIs can reveal some useful information about an action
that might reveal a sign about a malicious activity. As an
example, 25 badware samples execute the sendTextMessage
method based on the content of received GCM messages
while no goodware shows this dependency between a received
GCM message and an outgoing text message. Other kinds of
suspicious actions are openConnection and setRequestMethod
that exist in higher number of badware samples compared to
goodware. These patterns can model downloading payload or
performing DDoS attacks as the flow can show a command-

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of flows per application (log scale)

M
C

S
−

W
M

 c
la

s
s
if
ic

a
ti
o

n
 s

c
o

re

goodware

badware

decision threshold

Figure 5: The realationship between the total number of
flows in applications and the classification score.

and-control structure. The attacker sends a URL from the
control server to his bots using GCM and the bots then
perform requests against the received URL.

In adware, it is hard to say how each single pattern alone
can divulge a malicious activity as the same adlibrary, em-
bedded in adware, can be used in goodware as well. However,
the experiments showed that combination of GCM features
with others can contribute in the detection of adware, as this
links the presence of the adlibrary to other facts about the
application to provide more information about the context
in which the library is used.

5. LIMITATIONS
Considering that our approach is built on top of FlowDroid,

our system inherits its corresponding limitations. First, it has
difficulty to track API calls that are employed by reflection
techniques. Second, it cannot follow flows to the native code
as it is a flow analysis system for Java. Third, dynamic code
loading techniques should be another issue as FlowDroid is a
static analysis technique and an attacker can download a code
from internet as well as load a code from a local storage, and
then load it during runtime. Moreover, FlowDroid doesn’t
handle inter component communications. While some recent
papers have partially addressed the aforementioned issues
[25, 35, 26, 33], there is a need to push forward handling
these issues to the next stage.

Apart from static analysis limitations, there are possible
evasion techniques against machine learning like mimicry
attacks. For example, if the detection system didn’t consider
the semantic, an attacker can simply inject some dead code to
evade the detection system [41]. Although we didn’t evaluate
our approach against these kinds of attacks, an adversary
has to modify particular flows in application to evade our
system, which is not easy and needs a lot of efforts.

6. RELATED WORK
A part of the security community proposes mitigation

and access control solutions to protect Android against its
potential vulnerabilities, such as privilege escalation, and
information leakage. On the other hand, a vast majority of re-
searchers have focused more on Android application analysis
by considering two main issues. First, many approaches aim
to assess if there is a vulnerability in applications because

of neglected securely design and implementation. Second,
others propose detection systems against badware. As far
as the main purpose of our approach is application analysis,
we describe some prominent approaches in the application
analysis area with a highlight on those that focus on GCM
and adlibraries.

Application Vulnerability Analysis. Application vul-
nerabilities are identified as the number one security threat
because some developers don’t have enough security knowl-
edge. Therefore, researchers have been trying to detect
vulnerabilities in different components of applications. Mal-
loDroid [14] is one of the approaches that relies on static
analysis to find misuses in communications via SSL in An-
droid applications. Android applications vulnerabilities also
include SQL injection, which is one of the major vulnerabili-
ties affecting web application. ContentScope [22] showed that
SQL injection attacks can be used to extract some private
data from unprotected Content Providers. As other examples
of vulnerability detectors for Android applications, SEFA
[42] is a tool that analyzes in-component, cross-component,
and cross-Apps vulnerabilities, while Woodpecker [20] fo-
cus on the detection of just in-component vulnerabilities.
CHEX [28] is one of the most sophisticated in-component
and cross-component analysis tools that can detect compo-
nent hijacking vulnerabilities.

Badware Analysis. There are also a quite good number
of approaches that proposed different static and dynamic anal-
ysis techniques for badware classification. They are mostly
based on machine learning while the difference derives from
the feature extraction step. Some of these approaches vet
badware detection like Drebin [7], DroidAPIMiner [3], Mud-
Flow [9], AppAudit [43], while the others just concentrate on
badware family classification like DroidScribe [13] and Den-
droid [39]. Moreover, there are some systems that generalize
their approach for both malware detection and classification
such as DroidMiner [44] and DroidSIFT [45]. Apart from
the aforementioned systems that consider badware in generic
cases, there are also some researches that target some specific
kinds of badware like the one that provides a solution for
detection of logic bombs [17] in Android applications, or an-
other one that extracts potentially suspicious runtime values
such as premium SMS numbers or blacklisted URLs [35] to
thwart evasion techniques.

Advertisement Libraries Analysis. On the evaluation
of advertising libraries, there are some approaches like Ad-
Droid [30] and AdSplit [37] that contributed on isolating
advertising libraries from host applications (e.g., to create
fault isolation). A common way for adversary to monetize
the adlibraries is to repackage free benign applications with
injected adlibraries, and then earn ad revenue as explained
by Zhoe et. al [47]. They proposed an approach to decouple
the core of applications from other modules (e.g., adlibraries)
based on program dependency graph to detect repackaged
applications. Another work [38] examines the effects on
user privacy in thirteen popular Android ad providers by
reviewing their use of permissions.

GCM Services Analysis. There are just a few works
that analyzed GCM services for security objectives. The
most prominent example is the one that reported some vul-
nerabilities in GCM mechanism [27] by which an adversary
can steal sensitive user data of popular applications like Face-
book, and command the devices. A following work, called
Seminal [12], provides an automation to find vulnerabili-

pu
tS
tri
ng

se
tR
eq
ue
st
M
et
ho
d

se
tC
la
ss
N
am
e e

op
en
C
on
ne
ct
io
n d

pu
tE
xt
ra v

pu
t

se
tT
ex
tV
ie
w
Te
xt i w

no
tif
y

se
nd
Te
xt
M
es
sa
ge

w
rit
eO
bj
ec
t

w
rit
e

pu
tE
xt
ra
s

se
tA
ct
io
n

se
t

ad
d0

100

200

300

400

500

600

700
Benign
Malicious

Figure 6: Top 20 discriminative actions based on mean decrease impurity. They are sinks in data flows from GCM received
messages). e, d, v, i, w are log methods.

ties in applications using push notification services. Apart
from vulnerability analysis, other researchers [46] showed
how attackers might exploit push notification services like
GCM to create a cloud-based push-styled mobile botnet.
However, they didn’t propose any concrete analysis/defense
solution except advising either monitoring the network traffic
or verifying the combination of GCM permission with others.

As an overall comparison with the previous approaches,
opposite of the other works, this paper aimed to model the
behaviors of GCM services in Android applications statically
to more effectively discriminate badware from benign appli-
cations. Moreover, based on the best of our knowledge, we
are the first to use the MCS paradigm for Android malware
detection, which can help improving the performance of the
single classifiers.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we modeled Google Cloud Messaging in

Android applications to be able to detect flows from GCM
services, which consequently helps analyzers to investigate
security issues related to these services automatically. Con-
sideration of the GCM services is important because of the
advent of GCM in badware where GCM acts as a C&C chan-
nel. To assure how much this consideration can be beneficial,
we evaluated the effect of data flows from GCM services for
badware detection. Our results indicate that GCM features
help to more effectively discriminate badware using the GCM
mechanism from benign applications, compared to when they
are ignored. The proposed approach benefits from the MCS
approach which was proved to be more resilient to evasion
in computer security, so we expect the same behavior. As
a future plan, it is worth to extend this work to support
every kind of push services as they might be exploited more
extensively (e.g., Baidu Cloud Push service was abused in a
badware9).

8. ACKNOWLEDGMENTS
We are thankful to Giovanni Murgia for his efforts on

providing preliminary experimental results, as well as our
shepherd, Daniel Xiapu Luo, and the anonymous reviewers
for their invaluable comments to improve the paper. More-
over, we appreciate VirusTotal’s collaboration for providing

9http://b0n1.blogspot.co.uk/2015/03/remote-
administration-trojan-using.html

access to their Android applications. The research reported
in this work has been supported in part by the German
Federal Ministry of Education and Research (BMBF) and
by the Hessian Ministry of Science and the Arts (HMWK)
within CRISP.

9. REFERENCES
[1] Enisa threat taxonomy. http://goo.gl/ATLpcA.

[2] Mobile advertisement platforms. http://www.
mobyaffiliates.com/mobile-advertising-networks/.

[3] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining
API-Level Features for Robust Malware Detection in
Android, pages 86–103. 2013.

[4] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and
G. Giacinto. Novel feature extraction, selection and
fusion for effective malware family classification. In
CODASPY, pages 183–194, 2016.

[5] AndroTotal. (another) android trojan scheme using
google cloud messaging. https://goo.gl/W7ebNx, 2014.

[6] M. Aresu, D. Ariu, M. Ahmadi, D. Maiorca, and
G. Giacinto. Clustering android malware families by
http traffic. In MALWARE, pages 128–135, 2015.

[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck. Drebin: Effective and explainable detection
of android malware in your pocket. In NDSS, 2014.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
PLDI, pages 259–269, 2014.

[9] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller,
S. Arzt, S. Rasthofer, and E. Bodden. Mining apps for
abnormal usage of sensitive data. In ICSE, pages
426–436, 2015.

[10] B. Biggio, G. Fumera, and F. Roli. Multiple classifier
systems for robust classifier design in adversarial
environments. Int’l J. M. Learn. Cyb., 1(1):27–41, 2010.

[11] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 1st ed., Oct. 2007.

[12] Y. Chen, T. Li, X. Wang, K. Chen, and X. Han.
Perplexed messengers from the cloud: Automated
security analysis of push-messaging integrations. In
Comp. & Comm. Sec. (CCS), pages 1260–1272, 2015.

[13] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam,
M. Ahmadi, J. Kinder, and L. Cavallaro. Droidscribe:

http://goo.gl/ATLpcA
http://www.mobyaffiliates.com/mobile-advertising-networks/
http://www.mobyaffiliates.com/mobile-advertising-networks/
https://goo.gl/W7ebNx

Classifying android malware based on runtime behavior.
In Mobile Sec. Technologies (MoST), 2016.

[14] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith. Why eve and mallory love
android: An analysis of android ssl (in)security. In
Comp. & Comm. Sec. (CCS), 2012.

[15] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Comp. & Comm.
Sec. (CCS), pages 627–638, 2011.

[16] M. Fernández-Delgado, E. Cernadas, S. Barro, and
D. Amorim. Do we need hundreds of classifiers to solve
real world classification problems? Journal of Machine
Learning Research (JMLR), 15:3133–3181, 2014.

[17] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda,
C. Kruegel, and G. Vigna. TriggerScope: Towards
Detecting Logic Bombs in Android Apps. In Sec. and
Privacy (SP), May 2016.

[18] P. Geurts, D. Ernst, and L. Wehenkel. Extremely
randomized trees. Machine Learning, 63(1):3–42, 2006.

[19] G. Giacinto, F. Roli, and L. Didaci. Fusion of multiple
classifiers for intrusion detection in computer networks.
Patt. Rec. Lett., 24(12):1795–1803, Aug. 2003.

[20] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In NDSS, 2012.

[21] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond.
Truth in advertising: The hidden cost of mobile ads for
software developers. In Int. Conf. on Software
Engineering (ICSE), pages 100–110, 2015.

[22] Y. Jiang and Z. Xuxian. Detecting passive content
leaks and pollution in android applications. Network
and Distributed System Sec. Symp. (NDSS), 2013.

[23] Kaspersky. Gcm in malicious attachments.
https://goo.gl/zcRLQi, Aug. 2013.

[24] L. I. Kuncheva. Combining Pattern Classifiers:
Methods and Algorithms. J. Wiley & Sons, Inc., 2014.

[25] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon,
S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and
P. McDaniel. Iccta: Detecting inter-component privacy
leaks in android apps. In Int’l Conf. on Softw. Eng.
(ICSE), pages 280–291, 2015.

[26] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein.
Reflection-aware static analysis of android apps. In
Automated Softw. Eng., Demo Track (ASE), 2016.

[27] T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang,
and X. Han. Mayhem in the push clouds:
Understanding and mitigating security hazards in
mobile push-messaging services. In Comp. & Comm.
Sec. (CCS), pages 978–989, 2014.

[28] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
Statically vetting android apps for component hijacking
vulnerabilities. In Comp. & Comm. Sec. (CCS), pages
229–240, 2012.

[29] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and
G. Giacinto. Stealth attacks: An extended insight into
the obfuscation effects on android malware. Comp. Sec.,
51(C):16–31, June 2015.

[30] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner.
Addroid: Privilege separation for applications and
advertisers in android. In Symp. on Information, Comp.
& Comm. Sec. (ASIACCS), pages 71–72, 2012.

[31] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee.
Mcpad: A multiple classifier system for accurate
payload-based anomaly detection. Comput. Netw.,
53(6):864–881, Apr. 2009.

[32] I. Prochkova, V. Singh, and J. K. Nurminen. Energy
cost of advertisements in mobile games on the android
platform. In Int’l Conf. Next Generation Mobile App.,
Services and Tech., pages 147–152, Sept 2012.

[33] C. Qian, X. Luo, Y. Shao, and A. T. S. Chan. On
tracking information flows through jni in android
applications. In Dependable Systems and Networks
(DSN), pages 180–191, 2014.

[34] S. Rasthofer, S. Arzt, and E. Bodden. A
machine-learning approach for classifying and
categorizing android sources and sinks. In Network &
Distributed System Sec. Symp. (NDSS), Feb. 2014.

[35] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden.
Harvesting runtime values in android applications that
feature anti-analysis techniques. NDSS, 2016.

[36] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon:
Evaluating android anti-malware against
transformation attacks. In Information, Comp. &
Comm. Sec. (ASIA CCS), pages 329–334, 2013.

[37] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit:
Separating smartphone advertising from applications.
In USENIX Conf. on Sec. Symp., pages 28–28, 2012.

[38] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and
H. Chen. Investigating user privacy in android ad
libraries. In Mobile Sec. Technologies (MoST), 2012.

[39] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and
J. Blasco. Dendroid: A text mining approach to
analyzing and classifying code structures in android
malware families. Expert Syst. Appl., 41(4):1104–1117,
Mar. 2014.

[40] Trendmicro. Android malware use ssl for evasion.
https://goo.gl/OHeThO, Sep 2014.

[41] N. Šrndic and P. Laskov. Practical evasion of a
learning-based classifier: A case study. In Sec. and
Privacy (SP), pages 197–211, 2014.

[42] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The
impact of vendor customizations on android security. In
Comp. & Comm. Sec. (CCS), pages 623–634, 2013.

[43] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective
real-time android application auditing. In Sec. &
Privacy (SP), pages 899–914, May 2015.

[44] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras.
DroidMiner: Automated Mining and Characterization
of Fine-grained Malicious Behaviors in Android
Applications. In European Symp. Research in Comp.
Sec. (ESORICS), pages 163–182, 2014.

[45] M. Zhang, Y. Duan, H. Yin, and Z. Zhao.
Semantics-aware android malware classification using
weighted contextual api dependency graphs. In Comp.
& Comm. Sec. (CCS), pages 1105–1116, 2014.

[46] S. Zhao, P. P. C. Lee, J. C. S. Lui, X. Guan, X. Ma,
and J. Tao. Cloud-based push-styled mobile botnets: A
case study of exploiting the cloud to device messaging
service. In ACSAC, pages 119–128, 2012.

[47] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou.
Fast, scalable detection of ”piggybacked” mobile
applications. In CODASPY, pages 185–196, 2013.

https://goo.gl/zcRLQi
https://goo.gl/OHeThO

	Introduction
	Background
	Google Cloud Messaging
	GCM Badware

	System Design
	Modeling GCM service
	Feature Extraction
	Classification

	Experimental Analysis
	Experimental Setup
	Results
	Misclassified Samples

	Discriminative Patterns

	Limitations
	Related work
	Conclusions and Future Work
	Acknowledgments
	References

