
1

Super-sparse Learning in Similarity Spaces
Ambra Demontis Student Member, IEEE, Marco Melis Student Member, IEEE,

Battista Biggio Member, IEEE, Giorgio Fumera Member, IEEE, and Fabio Roli Fellow, IEEE
Department of Electrical and Electronic Engineering,

University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy

Abstract—In several applications, input samples are more
naturally represented in terms of similarities between each
other, rather than in terms of feature vectors. In these settings,
machine-learning algorithms can become very computationally
demanding, as they may require matching the test samples
against a very large set of reference prototypes. To mitigate
this issue, different approaches have been developed to reduce
the number of required reference prototypes. Current reduction
approaches select a small subset of representative prototypes in
the space induced by the similarity measure, and then separately
train the classification function on the reduced subset. However,
decoupling these two steps may not allow reducing the number
of prototypes effectively without compromising accuracy. We
overcome this limitation by jointly learning the classification
function along with an optimal set of virtual prototypes, whose
number can be either fixed a priori or optimized according to
application-specific criteria. Creating a super-sparse set of virtual
prototypes provides much sparser solutions, drastically reducing
complexity at test time, at the expense of a slightly increased
complexity during training. A much smaller set of prototypes
also results in easier-to-interpret decisions. We empirically show
that our approach can reduce up to ten times the complexity of
Support Vector Machines, LASSO and ridge regression at test
time, without almost affecting their classification accuracy.

I. INTRODUCTION

In a growing number of applications, including computer vi-
sion, biometrics, text categorization and information retrieval,
samples are often represented more naturally in terms of
similarities between each other, rather than in an explicit
feature vector space [1], [2]. Traditional machine-learning
algorithms can still be used to learn over similarity-based
representations; e.g., linear classification algorithms like Sup-
port Vector Machines (SVMs) [3], [4] can be trained in the
space implicitly induced by the similarity measure (i.e., the
kernel function) to learn nonlinear functions in input space.
However, the main drawback of similarity-based techniques is
their high computational complexity at test time, since com-
puting their classification function often requires matching the
input sample against a large set of reference prototypes, and
evaluating such similarity measures is usually computationally
demanding. Even SVMs, that induce sparsity in the number of
required prototypes (the so-called support vectors, SVs) may

A. Demontis: e-mail ambra.demontis@diee.unica.it, phone +39 070 675
5776

M. Melis: e-mail marco.melis@diee.unica.it, phone +39 070 675 5776
B. Biggio (corresponding author): e-mail battista.biggio@diee.unica.it,

phone +39 070 675 5776
G. Fumera: e-mail fumera@diee.unica.it, phone +39 070 675 5754
F. Roli: e-mail roli@diee.unica.it, phone +39 070 675 5779, fax (shared)

+39 070 675 5782

not provide solutions that are sparse enough, as the number
of prototypes (i.e., SVs) grows linearly with respect to the
number of training samples [5], [6]. To reduce the number of
reference prototypes, several state-of-the-art approaches select
them from the training data, and then separately train the
classification function using the reduced set of prototypes.
However, decoupling these two steps may not effectively re-
duce the number of prototypes, without significantly affecting
classification accuracy [2], [7], [8].

In this work, we first discuss the relationship between
current prototype-selection methods and our recently-proposed
approach for learning super-sparse machines on similarity-
based representations [9]–[11]. We then show that our ap-
proach can successfully tackle this issue by jointly learning
the classification function along with an optimal set of vir-
tual prototypes. The number of prototypes required by our
approach can be either fixed a priori, or optimized through a
carefully-designed, incremental cross-validation (CV) proce-
dure. Creating a super-sparse set of virtual prototypes allows
us to learn much sparser solutions, drastically reducing the
computational complexity at test time, at the expense of a
slightly increased computational complexity during training.
A much smaller set of reference prototypes also provides de-
cisions that are easier to interpret. We validate our approach on
two application examples, including biometric face verification
and age estimation from faces. Our approach does not almost
affect the generalization capability of SVMs, LASSO [12],
and ridge regression [13], while being capable of reducing
their complexity of more than ten times, overcoming the
performance of other reduction methods. We conclude this
paper with a discussion of future research directions.

II. LEARNING IN SIMILARITY SPACES

Two main approaches can be used to learn classification
and regression functions in similarity spaces, i.e., functions
that depend only on similarities between samples, and not on
their features [1], [2]. The first one consists of computing
an explicit representation of samples in a vector space that
aims to preserve the similarity values between the original
samples. A well-known example is related to kernel functions
(i.e., positive semi-definite similarity functions), as one may
exploit the eigenvalue or Cholesky decomposition of the
kernel matrix to represent samples in an explicit vector space,
called the empirical kernel mapping [1], [2], [7], [8], [19].
Their underlying idea is to decompose the kernel (similarity)
matrix K ∈ Rn×n computed on n training samples as

2

K = X>X, where X ∈ Rn×n represents the training samples
in the empirical kernel space. Then, at test time, never-before-
seen samples should be mapped onto the same space, to
be classified in a consistent manner, and this often requires
matching them against all training samples [1], [2]. Clearly, the
aforementioned decompositions are only possible for positive
semi-definite similarities (i.e., kernel matrices). For indefinite
similarities different techniques can be exploited to account
for the negative eigenvalues of K, and potentially exploit the
same decompositions, or adapt the corresponding classification
functions [1], [2], [19]. They include: spectrum clip, in which
the negative eigenvalues are set to zero; spectrum flip, in which
their absolute values are used; spectrum shift, in which they
are increased by a quantity equal to the minimum eigenvalue,
such that the smallest one becomes exactly zero; and spectrum
square, in which the eigenvalues are squared [1]. Notably,
spectrum flip amounts to mapping the input data onto a
pseudo-Euclidean space. This space consists of two Euclidean
spaces: one for which the inner product is positive definite, and
one for which it is negative definite. This enables computing
quadratic forms (e.g., vector norms and inner products) as the
difference of two positive-definite norms. Pseudo-Euclidean
spaces are a particular case of finite-dimensional Kreı̆n spaces
consisting of two real subspaces. In general, indefinite kernels
and similarities allow a consistent (e.g., infinite-dimensional)
representation in a Kreı̆n space [1], [2], [19].

The second approach consists of learning classifiers directly
in the similarity space, i.e., exploiting similarities computed
against a set of reference prototypes as feature values. This
is equivalent to the former approach, if the spectrum-square
technique is used [1], [2] (see the example in Fig. 1). Worth
remarking, some learning algorithms have been explicitly
modified to deal with similarities, instead of adapting the
similarity-based representation to existing learning algorithms.
Examples can be found in the area of relational fuzzy cluster-
ing [20], and relational lexical variant generation [21], [22].

Feature- and similarity-based representations may be
thought as two facets of the same coin: modifying the similar-
ity measure amounts to modifying the implicit feature space
in which the linear decision function operates, and vice versa.
This means that, to achieve good generalization capabilities,
it is necessary to properly define this space on the basis of
the given learning algorithm. When one is given a similarity-
based representation, this space can be manipulated essentially
in two ways, i.e., by either modifying the similarity measure
or the prototypes. Several approaches have been proposed to
manipulate the similarity measure, including multiple kernel
learning and similarity learning [14], [15]. They exploit a
parametric similarity or distance measure, whose parameters
are tuned by running a learning algorithm on the training data.
In particular, in the case of multiple kernel learning, the goal
is to learn the coefficients of a convex linear combination of
a set of given kernels [14]. Conversely, only few works have
addressed the problem of selecting the reference prototypes to
reduce complexity of similarity-based classifiers [7], especially
in the context of structured inputs like graphs and strings [16],
[17]. To this end, it is also worth remarking that the Nyström
approximation can be exploited to approximate n×n similarity

matrices based on a subset of m � n randomly-chosen
prototypes, reducing the complexity of computing all pairwise
similarities from O(n2) to O(nm2). This approximation also
works for indefinite kernels and similarities [18].

The latter approach, based on learning classifiers directly
in the similarity space, includes the solution we propose in
this paper and it is of particular interest in applications where
the similarity metric is: (i) defined and can not be modified,
(ii) not given in analytical terms, and (iii) not necessarily
positive semi-definite. For instance, in fingerprint recognition,
the similarity measure is often defined a priori, as it encodes
the knowledge of domain experts, and in most of the cases
it is not positive semi-definite (it does not obey the triangle
inequality). In addition, it is usually computed by a physical
device, called matcher, and it is not even analytically defined.
Modifying the similarity measure in these cases is not possible.
The only way of manipulating the space induced by such a
measure consists of modifying the prototypes. The main limit
of the corresponding state-of-the-art approaches is however
intrinsic to the fact that they separately select the prototypes
and then learn the classification function [7]. The approach
advocated in the next section, instead, is based on the idea
of jointly optimizing the prototypes and the parameters of
the classification function, to outperform existing reduction
methods in similarity spaces. Furthermore, with respect to
methods devoted to reduce the number of SVs in SVMs, our
approach requires neither the similarity to be a positive semi-
definite kernel, nor the learning algorithm to be an SVM [9].
It can be applied, in principle, to reduce the complexity of any
similarity-based learning algorithm.

III. SUPER-SPARSE VIRTUAL VECTOR MACHINES

We present here our approach to learn super-sparse ma-
chines, inspired from [9]–[11]. The underlying idea is to
reduce complexity of similarity-based learning algorithms by
employing a very small set of virtual prototypes. The virtual
prototypes obtained by our learning algorithm are not neces-
sarily part of the training data, but are specifically created with
the goal of retaining a very high generalization capability.

Let us denote with D = {xi, yi}ni=1 the training data, where
xi ∈ X are the input samples and yi ∈ Y are their labels. We
consider here a vectorial representation of the input data x,
i.e., we assume that X is a vector space. The output space
Y depends on whether we are considering a regression or
classification problem. For regression, we consider Y ⊆ R,
whereas for two-class classification, we set Y = {−1,+1}.
The set of virtual prototypes is denoted with z = {zj}mj=1,
where m � n to obtain much sparser solutions. The value
of m can be either fixed a priori, depending on application-
specific constraints (e.g., specific requirements on storage and
time complexity, as in match-on-board biometric verification
systems), or it can be optimized through a well-crafted CV
procedure, as defined at the end of this section. Note that the
virtual prototypes zj belong to the same input space X as
the training samples. We finally denote the similarity function
with s : X × X 7→ R. It can be any symmetric similarity
function (not necessarily positive semi-definite).

3

0.2 0.4 0.6 0.8 1.0

s(· , z1)

0.0

0.2

0.4

0.6

0.8

1.0

s(
· ,
 z
2
)

z1

z2

Similarity Space

−1.0 −0.5 0.0 0.5 1.0
x ·,1

−1.0

−0.5

0.0

0.5

1.0

x
·,2

z1

z2

Input Space

Fig. 1: Left: A linear SVM classifier trained in a two-dimensional similarity space, using similarities as features, z1 and z2
as the reference prototypes, and the RBF kernel s(x, z) = exp

(
−‖x− z‖2

)
as the similarity measure. Blue ‘+’ and red ‘×’

represent the training data, while the black solid line denotes the classification boundary. Right: The corresponding nonlinear
decision function in the input space.

Our goal is to learn a discriminant function g(x) consisting
of a very sparse linear combination of similarities computed
against the virtual prototypes:

g(x) =
∑m

j=1 βjφj(x) + b =
∑m

j=1 βjs(x, zj) + b , (1)

where β = (β1, . . . , βm) ∈ Rm is the vector of coefficients
(one per virtual prototype), and b is the bias. Our approach is
specifically designed to work in the similarity space, i.e., our
basis functions φj(x) are similarity functions s(x, zj). The
reason is that we aim to optimize the virtual prototypes zj
without changing s, as in several applications such a function
can not be changed; e.g., in biometric verification, one is often
given a matching function which is neither customizable nor
even known analytically.

As in [8], [9], we consider a regression problem in which the
goal is to minimize the distance between the target variables
y and g on the training points, with respect to the parameters
of g, i.e., the coefficients β, b and the set of virtual prototypes
z. We do not constrain the prototypes z to be in D, but
enable the creation of novel (virtual) prototypes. This allows
our algorithm to achieve a better trade-off between accuracy
and the number of required prototypes. The problem can be
thus formulated as:

minβ,b,z
∑n

i=1 ui (g(xi)− yi)2 + λβ>β , (2)

where the scalars u1, . . . , un balance the contribution of
each training sample xi to the loss function (which may be
useful when training classes are imbalanced), the quadratic
regularizer β>β controls overfitting, and λ is a regularization
parameter. Note that sparsity is not induced here by a sparse
regularizer on β, but rather by setting m to a small value.
This approach is clearly linear in the space induced by the
similarity function, but not necessarily in the input space X ,
i.e., the similarity mapping can be used to induce nonlinearity
as in kernel methods. The objective function in Problem (2)
can be rewritten in matrix form:

Ω (β, b,z) =
(
g>Ug − 2y>Ug + y>Uy

)
+ λβ>β , (3)

where the column vectors g = Sxzβ + b ∈ Rn and y ∈ Rn

consist of the values of g and y for the training data, U ∈
Rn×n is a diagonal matrix such that diag(U) = (u1, . . . , un),
and Sxz ∈ Rn×m is the similarity matrix computed between
x1, . . . ,xn and the prototypes z.

The objective function in Eq. (3) can be iteratively mini-
mized by modifying β, b and z. First, we randomly initialize
the prototypes {z(0)j }mj=1 with m training samples from D,
and then iteratively repeat the two steps described below.
(1) β-step. The optimal coefficients β are computed while
keeping the prototypes z fixed. This amounts to solving a
standard ridge regression problem, whose analytical solution
is given by deriving Eq. (3) with respect to β and b (with
z constant), and then setting the corresponding gradients to
zero:[

S>xzUSxz + λI S>xzU1
1>USxz 1>U1

]
︸ ︷︷ ︸

M

[
β
b

]
=

[
S>xz
1>

]
Uy , (4)

where I ∈ Rm×m denotes the identity matrix. Note that the
system given by Eq. (4) can be iteratively solved without
necessarily inverting M, e.g., using stochastic gradient de-
scent [23].
(2) z-step. If the similarity function is differentiable, Eq. (3)
can be minimized through gradient descent (as no closed-form
solution exists for this problem). Deriving with respect to a
given zj , we obtain:

∂Ω

∂zj
= 2 (g − y)

>
U

(
βj
∂Sxzj

∂zj
+ Sxz

∂β

∂zj
+ 1

∂b

∂zj

)
+ 2λβ>

∂β

∂zj
,

(5)

where Sxzj
is the jth column of Sxz . Note that all the deriva-

tives computed with respect to zj here are vectors or matrices
with the same number of columns as the dimensionality of zj .
To compute ∂β

∂zj
and ∂b

∂zj
, as required by Eq. (5), we derive

Eq. (4) with respect to zj and solve for the required quantities:[
∂β
∂zj
∂b
∂zj

]
= −M−1

(
βj

[
S>xz
1>

]
+

[
V>

0>

])
U
∂Sxzj

∂zj
, (6)

4

−2 0 2

−1.5

0.0

1.5

SVM (10 SVs)

−1

0

1

−2 0 2

−1.5

0.0

1.5

Super-sparse SVM (2 virtual prototypes)

−1

0

1

Fig. 2: A two-dimensional example showing the values of the discriminant function (in colors) of an SVM with the RBF
kernel (left) trained on 25 samples (red and blue points in the left plot), and of g(x) for our super-sparse learning algorithm
(right). Our approach almost exactly replicates the SVM’s decision function (solid black line) using only 2 virtual prototypes
instead of 10 SVs (highlighted with black circles in the left plot). The initial and final positions of the two virtual prototypes
optimized by our approach are also shown in the right plot, respectively as black circles and green stars.

where V ∈ Rn×m is a matrix that consists of all zeros except
for the jth column, which is equal to (g− y), and 0,1 ∈ Rn

are column vectors of respectively n zeros and n ones.
The complete algorithm is given as Algorithm 1. Note that

we invert the z- and β-step detailed above for the sake of
compactness. In fact, the coefficients β and b should always
be updated after changing the prototypes. Our method can
also be used to reduce the number of prototypes used by
kernel-based or prototype-based classifiers, like the SVM, by
setting the target variables y to the values of the discriminant
function of the target classifier for each training point. An
example is reported in Fig. 2.1 Worth remarking, the virtual
prototypes found by our algorithm are quite different from
the SVs found by the SVM. In fact, the latter are close to the
boundary of the discriminant function, whereas our prototypes
are found approximately at the centers of small clusters of
training points.
Gradient of s(xi, zj). In Eq. (6), the computation of the
derivative of s(x1, zj), . . . , s(xn, zj) with respect to the
corresponding zj , depends on the given similarity measure
s. If s has an analytical representation, like in the case of
kernels, the derivative can be easily computed; e.g., for the
RBF kernel, s(xi, zj) = exp(−γ||xi−zj ||2), and ∂s(xi,zj)

∂zj
=

2γ exp(−γ||xi−zj ||2)(xi−zj). Otherwise, the gradient can
be only approximated numerically, by querying s(·, zj) in a
neighborhood of zj . This is computationally costly, especially
if zj is high dimensional. In the case of images, we have
found that the similarity tends to increase while shifting zj
towards xi, even if this shift is operated linearly in the space
of the pixel values (e.g., by computing a convex combination
of the two images) [9]–[11]. This amounts to approximating
the gradient as

∂s(xi, zj)

∂zj
= s(xi, zj) (xi − zj) . (7)

1Exploiting the values of a classifier’s discriminant function as the target
variables y in our approach usually works better than using the true classifica-
tion labels y directly. The reason is that our approach uses the `2 loss, which
is best suited to regression tasks. For classification, one should indeed exploit
a loss function tailored to classification approaches, e.g., the hinge loss.

Algorithm 1 Super-sparse Learning Machine
Input: The training data D = {xi, yi}ni=1; the similarity
function s(·, ·); the regularization parameter λ; the initial
coefficients (β(0), b(0)) and vectors {z(0)j }mj=1; the gradient
step size η; a small number ε.
Output: The learned coefficients (β, b) and vectors
{zj}mj=1.

1: Set the iteration count t← 0.
2: repeat
3: Set j ← mod(t,m) + 1 to index a virtual proto-

type.
4: Increase the iteration count t← t+ 1
5: z-step. Set z(t)

j ← z
(t−1)
j − η ∂Ω

∂z
(t−1)
j

− 1
t2

∂Szzj

∂z
(t−1)
j

(Eq. 5 with penalty for close prototypes).
6: Project z(t)

j onto the feasible domain, if any (e.g.,
a box constraint).

7: Set z(t)
i = z

(t−1)
i , ∀i 6= j.

8: β-step. Compute (β(t), b(t)) using z
(t)
1 , . . . ,z

(t)
m

(Eq. 4).
9: until

∣∣∣Ω(β(t), b(t), z(t))− Ω(β(t−1), b(t−1), z(t−1))
∣∣∣ <

ε
10: return: β = β(t), b = b(t) and z = z(t).

Although using this heuristic to approximate the gradient of s
may affect, in general, the convergence of our algorithm, in the
next section we show that it works quite well even when the
similarity function is not analytically given (i.e., for a graph-
based face matching algorithm). Clearly, different heuristics
may be considered, if the proposed one turns out to be not
suited to the task at hand.
Prototype Initialization. Our approach might suffer from the
intrinsic nature of the non-convex optimization problem faced
in the z-step, i.e., when optimizing the virtual prototypes.
In fact, due to the presence of multiple local minima (in
which some prototypes may be too close to each other), our
algorithm turns out to be quite sensible to the initialization of
the virtual prototypes [9]–[11]. To overcome this limitation,
we propose the following strategy. Instead of running the
algorithm multiple times with different initializations (which

5

would increase the overall computational complexity of our
approach), we modify the gradient defined in Eq. (5) to
account for a penalty term. It aims to reduce similarities
between virtual prototypes, avoiding them to converge towards
the same points. The penalty that we add to the gradient
of Eq. (5) is simply

∂Szzj

∂zj
. Since this term achieves large

values for prototypes that are closer to zj , it is clear that
zj will be shifted away from them during optimization. We
further multiply the penalty term by a decaying coefficient
(e.g., t−2, being t the iteration count) to distance the prototypes
sufficiently during the first iterations of the algorithm, without
affecting convergence of our algorithm.
Selecting the number of virtual prototypes. Another impor-
tant issue in our method regards the selection of m. As already
discussed, m can be directly defined from specific constraints;
otherwise, when some some degree of flexibility is allowed, it
is possible to tune m by minimizing the number of prototypes
without significantly compromising accuracy. To this end, we
define an objective function characterizing this trade-off as

L(m) = `(m) + ρ ·m, (8)

and set m = arg minm′ L(m′). In the above objective, ` is a
loss (error) measure to be evaluated on a validation set, and ρ
is a trade-off parameter. For higher ρ values, fewer prototypes
are selected, at the expense of higher error rates.

The value of m that minimizes Eq. (8) can be efficiently se-
lected through an incremental CV procedure which uses a grid
search on some pre-defined values m ∈ {mj}Kj=1, as described
in what follows. Let us assume that m1 > . . . > mK . We first
learn our approach using the largest number of prototypes m1.
Then, to learn the solution with m2 prototypes, we remove the
m1 − m2 prototypes assigned to the smallest β coefficients
(in absolute value), and update the remaining m2 coefficients
and prototypes by re-running the learning algorithm from
the current solution (warm start). We iterate until the most
compact solution with mK prototypes is learned, and then
select the value of m that minimizes Eq. (8). An example is
given in Fig. 3.
Computational Complexity. As previously discussed, our
learning algorithm consists of two steps. The β-step is com-
putationally lightweight, as it only requires solving a linear
system involving m+1 variables. Furthermore, this system has
to be solved from scratch only at the first iteration, while for
subsequent iterations one can exploit the previous solution as
a warm start, and use an iterative algorithm to converge to the
solution very quickly. The most computationally-demanding
part is instead the computation of Sxzj

during the z-step,
which has complexity of O(n), as we optimize one prototype
at a time. Clearly this has to be repeated at each iteration.
However, as our approach typically converges within 20 to
30 iterations, it is likely that it remains faster than other
prototype-based learning algorithms. The reason is that the
latter usually require computing the entire similarity matrix,
which costs O(n2) operations. We will nevertheless discuss
some techniques to reduce the training complexity of our
approach in Sect. VI. As for the complexity at test time,
it is clear that our approach drastically reduces it to O(m)
operations.

Structured Inputs. Worth remarking, if the prototypes are
not represented in terms of feature vectors, but using more
complex structures (e.g., graphs or strings), then the z-step of
our algorithm can not be optimized through gradient descent.
More generally, one may define a set of minimal modifications
to each prototype (e.g., adding or removing a vertex in a
graph, or characters in a string), and select those that greedily
minimize the objective in Eq. (3). Note however that this
black-box optimization procedure is clearly computationally
demanding, and further empirical investigations are required
to validate its effectiveness and extend our approach to more
generic, structured inputs.

IV. APPLICATION EXAMPLES

We report here two application examples related to face
verification and age estimation from faces [9], [10]. The goal
of these examples is to show how and to what extent our
super-sparse reduction approach can improve computational
efficiency at test time without almost affecting system perfor-
mance.

A. Biometric Identity Verification from Faces

Face verification consists of validating if a client is claiming
his/her real identity (genuine claim) or he/she is pretending
to be someone else (impostor claim). To this end, his/her
face is acquired through a camera and compared against the
reference prototypes of the claimed identity. To save time and
memory, few reference prototypes are used. The corresponding
similarity values are then combined with heuristic schemes,
separating prototype selection from the algorithm used to
combine the similarities [9].

We train a one-vs-all SVM for each client. This automat-
ically selects the optimal prototype gallery (i.e., the SVs),
which however is often too large. We show that the proposed
algorithm can successfully reduce the number of SVs, without
affecting the recognition performance. We use the benchmark
AT&T2 and BioID3 face datasets, respectively consisting of
40 clients with 10 face images each, and of 1,521 face images
belonging to 23 clients. We assume that half of the clients
are enrolled into the system, while the remaining ones are
used only as impostors at test time. For training we randomly
select 5 face images per enrolled client, and simulate impostors
using face images of enrolled clients that do not belong to the
claimed identity. At test time, we simulate impostors using
the non-enrolled clients, and genuine claims using all the
remaining face images of the claimed identity not used in the
training set. This guarantees that the impostors are different
between training and test sets (a common practice when testing
biometric systems). Results are averaged over five different
training-test pairs and client splits.
Matching algorithms. We use two different matching algo-
rithms to compute similarities between faces.
1) Eigenface-based RBF Kernel [24], [25]. This algorithm
maps each face image onto a reduced d-dimensional feature

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3https://www.bioid.com/About/BioID-Face-Database

6

−1.5 0.0 1.5

−1.5

0.0

1.5

m=3

0.1

0.5

0.9

−1.5 0.0 1.5

−1.5

0.0

1.5

m=2

0.1

0.5

0.9

10 9 8 7 6 5 4 3 2
m0.04

0.05

0.06

0.07

0.08

0.09

0.10
L(m)

Fig. 3: An example of our incremental CV procedure to select m. We initially set m = 10, and iteratively remove one prototype
at a time, up to m = 2. The discriminant function g(x) of our super-sparse learning algorithm is shown (in colors) in the left
and middle plot, for m = 3 and m = 2. The initial and final positions of the current prototypes are shown as black circles
and green stars, respectively, while the prototypes removed at the previous iterations are reported as red stars. The minimum
of L(m) (Eq. 8) is attained for m = 3 (using the mean squared error as the loss function `(m), and ρ = 10−3), as shown in
the left plot. In fact, for m = 2, the set of blue points is not properly represented, and L(m) increases.

vector using principal component analysis (PCA). We select
d so as to preserve 95% of the variance of the data. We then
use the RBF kernel s(xi,xj) = exp(−γ‖xi − xj‖2) as the
similarity measure, and set γ = 1/d [26]. On average, we got
d = 56 for AT&T, and d = 41 for BioID.
2) Elastic Bunch Graph Matching (EBGM) [27]. It extracts a
bunch of image descriptors (i.e., Gabor wavelets) at predefined
landmark points in face images (e.g., eyes and nose). These
points correspond to nodes in a graph, which is elastically
deformed to account for different face orientations and ex-
pressions during matching. In this case, s(xi,xj) is neither
analytically given, nor positive semi-definite.
Verification methods. We compare our approach to learn
super-sparse SVMs (SSVM) with the SVM-sel and SVM-red
techniques for reducing the number of SVs [8] (see Sect. V),
and also consider the standard SVM for comparison.

We set the SVM regularization parameter C ∈
{10−1, 100, . . . , 103} by maximizing recognition accuracy
through a 5-fold CV. As the two classes are highly unbalanced,
we used a different C value for each class, multiplying it by the
prior probability of the opposite one, estimated from training
data. To ensure fast convergence of our Algorithm 1 to a stable
solution, we run a set of preliminary experiments and set the
gradient step η = 0.5 for both datasets; the regularization
factor λ = 10−6 for the Eigenface-based RBF Kernel, and
λ = 10−3 and λ = 10−5 for the EBGM on the BioID
and AT&T data, respectively. The gradients of s(xi, zj) are
analytically computable for the RBF Kernel; for the EBGM
(which is not given analytically) we use the approximate
gradient given in Eq. (7).
Results. Fig. 4 shows the fraction of incorrectly-rejected
genuine claims (false rejection rate, FRR) vs. the fraction of
incorrectly-accepted impostors (false acceptance rate, FAR)
for each method, obtained by varying each client-specific
threshold, and then by averaging over all clients and repeti-
tions. The average number of matchings (prototypes) required
by each method at test time is also reported. Except for SVM,
this number has to be fixed in advance: for SVM-sel, SVM-

red, and SSVM we respectively set it to 10, 2 and 2, when
using the RBF Kernel, and to 5, for all methods, when using
the EBGM.

Our SSVM achieves comparable performance as SVM but
using only 2 and 5 virtual prototypes (instead of more than
20 and 15), respectively, for the RBF kernel and EBGM
matching algorithms. Conversely, SVM-sel and SVM-red re-
quire a higher number of prototypes to achieve a comparable
performance. This highlights that a principled approach may
guarantee high recognition accuracy and efficiency using an
extremely sparse set of virtual prototypes, without even know-
ing analytically the matching algorithm.
Interpretability. An example of the virtual prototypes found
by our SSVM is shown in Fig. 5. We can appreciate that the
genuine (virtual) prototypes (β > 0) are obtained by merging
genuine prototypes, preserving the aspect of the given client.
Impostor prototypes (β < 0) are instead the combination of
faces of different identities, to compactly represent information
about impostors. Although these prototypes do not correspond
to any real user, interestingly they still resemble face images.
This makes our SSVM approach interpretable, in the sense
that a face image is considered genuine if it is sufficiently
similar to the genuine prototypes found by our algorithm (and
different from the impostor ones).

B. Age Estimation from Faces

The goal here is to predict the age of a person from
a photograph of his/her face. We tackle this problem as a
regression task, as most of the existing methods, and show that
our approach can be helpful in this context to: (i) speed up age
estimation at test time by dramatically reducing the number of
reference prototypes; (ii) provide more interpretable decisions;
and (iii) mitigate the risk of overfitting to specific face
databases. The experimental setup is similar to the one defined
in our previous work [10].
Datasets. We use two publicly-available benchmark face
databases: Fg-Net Aging and FRGC. Fg-Net is the main

7

FAR (%)
0.5 1 2 5 10

F
R

R
 (

%
)

0

10

20

30
BioID - RBF Kernel

SVM (23.9 ± 2.7)
SVM-sel (10)
SVM-red (2)
SSVM (2)

FAR (%)
0.5 1 2 5 10

F
R

R
 (

%
)

0

10

20

30
BioID - EBGM

SVM (15.0 ± 2.6)
SVM-sel (5)
SVM-red (5)

SSVM (5)

FAR (%)
0.5 1 2 5 10

F
R

R
 (

%
)

0

5

10

15

20
AT&T - RBF Kernel

SVM (37.5 ± 3.8)
SVM-sel (10)
SVM-red (2)
SSVM (2)

FAR (%)
0.5 1 2 5 10

F
R

R
 (

%
)

0

5

10

15

20
AT&T - EBGM

SVM (19.5 ± 3.0)
SVM-sel (5)
SVM-red (5)
SSVM (5)

Fig. 4: Averaged FRR vs FAR values for the BioID (top row) and AT&T (bottom row) face datasets, and for the Eigenface-based
RBF Kernel (left column) and EBGM (right column) algorithms. The average number of matchings required for verification
and the std. dev. is reported in parentheses.

4.040 2.854 −0.997 −3.525 −2.208

Fig. 5: Prototypes and β values learned by our SSVM for
a client in the BioID dataset, using the EBGM matching
algorithm.

Fig. 6: Prototypes and β values learned by our super-sparse
LASSO from the Fg-Net data.

database for this task. It includes about 1,000 images of 82
subjects acquired in a totally uncontrolled condition, which
makes it particularly challenging. Many images are blurred,
exhibit different resolutions and illumination conditions, and
the number of subjects per age is not equally distributed.
The age range for each subject varies from 0 to 69 years,
although the majority of images belong to 20-year-old people.
FRGC consists of about 50,000 face images acquired in
different time sessions, belonging to about 500 people (about
200 females and 300 males) of different ethnicity, with ages
spanning from 17 to 69 years. Face images were acquired in a
controlled indoor environment, in frontal pose, to facilitate the
recognition task. To keep the complexity of our experiments
manageable, we restrict our analysis to a subset of about
5,000 images, randomly selected from this dataset. The age
distributions of both datasets are shown in Fig. 7.

Experimental Setup. We normalize images as discussed
in [10], and reduce the resulting set of 19,500 features (i.e.,
pixel values) through linear discriminant analysis (LDA), re-
taining the maximum number of components (i.e., the number
of different age values minus one). We evaluate performance in
terms of Mean Absolute Error: MAE = 1

r

∑r
i=1 |g(xi)− yi|,

where g(xi) is the regression estimate of our approach for

the ith subject, whose true age is yi, and r is the number of
test images. We average results using a 5-fold CV procedure
where each subject appears only in one fold. We use the RBF
kernel as the similarity measure. We consider LASSO [12]
and ridge [13] regression, and optimize their regularization
parameter through CV. We compare our approach against
the following prototype-selection methods [16], [17]: Random
(PS-R), which randomly selects m prototypes from the training
data; Border (PS-B), which selects m prototypes from the
frontier of the training data; Spanning (PS-S), which selects
the first prototype as the training-set median, and the remain-
ing ones through an iterative procedure that maximizes the
distance to the set of previously-selected prototypes; and k-
medians (PS-KM), which runs k-means clustering to obtain m
clusters from the training set, and then selects the m prototypes
as their set medians (i.e., the medians of the clusters). We
optimize m according to the CV procedure defined in Sect. III,
using the MAE as the loss function `(m) and ρ = 0.1 (Eq. 8).
We consider also a cross-database scenario in which training
and test sets are drawn from different databases, to verify if
prototype-selection methods are less prone to overfitting.

Results. As shown in Table I, both for the standard and
cross-database evaluations, our algorithms exhibit almost the

8

0 20 40 60
0

20

40

60

age

N
u
m

b
e
r

o
f
im

a
g
e
s

Fg−Net

0 20 40 60
0

250

500

750

1000

age

FRGC

Fig. 7: Number of images per age (years) for Fg-Net (left) and FRGC (right).

TABLE I: Average MAE and the number of prototypes (in parentheses) selected by Ridge, LASSO, and the corresponding
prototype-selection methods, for LDA-based features. Each column reports training/test sets, including cross-database evalua-
tions; e.g., Fg-Net/FRGC means that Fg-Net is used for training, and FRGC for testing. The lowest error values are highlighted
in bold, for each configuration.

Method Fg-Net/Fg-Net Fg-Net/FRGC FRGC/Fg-Net FRGC/FRGC

Ridge 8.00 (781.6) 8.46 (781.6) 14.85 (2747.2) 4.53 (2747.2)
PS-R Ridge 9.93 (5.0) 9.11 (5.0) 12.98 (4.0) 4.10 (4.0)
PS-B Ridge 36.78 (5.0) 30.48 (5.0) 26.34 (4.0) 17.35 (3.2)
PS-S Ridge 11.13 (5.0) 10.36 (5.0) 15.29 (4.0) 4.85 (4.0)
PS-KM Ridge 10.45 (5.0) 13.94 (5.0) 13.62 (4.0) 4.04 (4.0)
SRidge 9.06 (5.2) 7.96 (4.6) 14.42 (4.4) 4.31 (4.2)

LASSO 7.92 (60.0) 8.99 (60.2) 14.71 (20.8) 4.67 (22.4)
PS-R LASSO 11.77 (5.0) 7.81 (7.0) 14.54 (3.0) 5.40 (2.4)
PS-B LASSO 36.78 (5.2) 28.66 (7.0) 25.80 (2.6) 17.48 (2.2)
PS-S LASSO 10.54 (5.0) 10.34 (7.2) 14.15 (3.0) 4.48 (3.0)
PS-KM LASSO 12.54 (5.0) 9.96 (7.0) 15.37 (3.0) 5.14 (3.0)
SLASSO 7.99 (6.2) 9.09 (7.6) 14.76 (3.6) 4.75 (4.0)

same performance as their non-sparse versions, despite using
fewer prototypes. They often outperform also the competing
prototype-selection methods, or achieve a comparable perfor-
mance.
Interpretability. Interpretability of decisions is important to
determine whether meaningful aging patterns are learned, i.e.,
if the age of a subject can be correctly predicted from face
images of different datasets. Fig. 6 shows a set of prototypes
found by our super-sparse LASSO algorithm, which correctly
assigns higher β values to older people.

V. RELATED WORK

Besides work in similarity-based learning, discussed in
Sects. I-II, another line of research related to super-sparse
learning in similarity spaces is the one related to SVM
reduction approaches, i.e., approaches that aim at reducing
the number of SVs of an SVM, or to learn SVM with reduced
complexity directly [8], [28], [29]. Worth remarking, however,
our approach is not specifically designed for SVMs and kernel
machines, as it can be in principle applied to generic similarity
functions and learning algorithms. Moreover, the first reported
application example on face verification has also demonstrated
that some of the existing methods for reduction of SVs in
SVMs (i.e., SVM-sel and SVM-red) can not achieve reduction
rates and accuracy that are comparable with those achieved
by our method. These methods in practice reduce the number

of SVs by minimizing the `2 distance computed between the
hyperplane normal of the given (unpruned) SVM and that of
the reduced SVM in kernel space, as a function of the dual
coefficients α and the set of reduced prototypes [8]. While α
can be analytically found, as in our method, the choice of the
reduced prototypes is different: SVM-sel eliminates one pro-
totype at each iteration from the initial set using Kernel PCA
to drive the selection; and SVM-red creates a new prototype
at each iteration by minimizing the aforementioned `2-norm
distance. Both approaches are thus greedy, as the reduced set
of prototypes is constructed iteratively by removing or adding
a prototype at a time, up to the desired number m. The reason
of the superior performance exhibited by our algorithm is
thus twofold: (i) SVM-sel and SVM-red require the matching
algorithm to be a positive semi-definite kernel to uniquely find
the coefficients α;4 (ii) they do not modify the prototypes that
are already part of the reduced expansion, and do not even
reconsider the discarded ones. Our approach overcomes such
limitations by optimizing a different objective (suited to non-
positive semi-definite kernels too) and by iteratively modifying
the virtual prototypes during the optimization. These may be
common advantages also with respect to more recent reduction
methods, but this deserves further investigation [28], [29].

4In fact, the notion of hyperplane exploited in their objective is only
consistent for positive semi-definite kernels.

9

VI. SUMMARY AND OPEN PROBLEMS

The proposed approach aims to tackle computational com-
plexity of similarity-based classifiers at test time. Our approach
builds on [9]–[11], where we originally define our super-
sparse learning machines. Here we have further extended
our approach especially from an algorithmic viewpoint, by
including a penalty term to reduce sensitivity to initialization
of the virtual prototypes, and by designing a specific CV
procedure to tune the number of prototypes m. We remark
that we do not consider multi-class classification problems,
but that an extension of our approach to deal with them has
already been developed, exhibiting outstanding performance
on image classification [11].

Our future research directions aim at designing very effi-
cient (and interpretable) machines at test time. We will first
explore different possibilities to overcome the computational
bottleneck of our approach during training; e.g., similarities
between the virtual prototypes and the training samples can
be only computed after a given number of iterations p > 1,
instead of being computed at each shift of a virtual prototype.
During the intermediate steps, the similarity values can be
updated using a first-order approximation, which is provided
by the computations performed at the previous iterations.
Another interesting research direction consists of exploiting
our super-sparse reduction approach to reduce complexity of
other non-parametric estimators, like kernel density estimators
and k-nearest neighbors. Finally, it would be interesting also
to extend our approach to handle complex input structures like
graphs and strings, considering efficient black-box optimiza-
tion techniques.

REFERENCES

[1] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti,
“Similarity-based classification: Concepts and algorithms,” J. Mach.
Learn. Res., vol. 10, pp. 747–776, March 2009.

[2] E. Pȩkalska, P. Paclik, and R. P. W. Duin, “A generalized kernel approach
to dissimilarity-based classification,” J. Mach. Learn. Res., vol. 2, pp.
175–211, Dec. 2001.

[3] V. N. Vapnik, The Nature of Statistical Learning Theory. New York,
NY, USA: Springer-Verlag New York, Inc., 1995.

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sept. 1995.

[5] I. Steinwart, “Sparseness of support vector machines,” J. Mach. Learn.
Res., vol. 4, pp. 1071–1105, Nov. 2003.

[6] O. Chapelle, “Training a support vector machine in the primal,” Neural
Comput., vol. 19, no. 5, pp. 1155–1178, May 2007.

[7] E. Pȩkalska, R. P. W. Duin and P. Paclík, “Prototype selection for
dissimilarity-based classifiers,” Patt. Rec., vol. 39, no. 2, pp. 189–208,
Feb. 2006.

[8] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Muller,
G. Rätsch, and A. J. Smola, “Input space versus feature space in kernel-
based methods," IEEE Trans. on Neural Networks, vol. 10, no. 5, pp.
1000–1017, Sept. 1999.

[9] B. Biggio, M. Melis, G. Fumera, and F. Roli, “Sparse support faces,” in
Proc. Int. Conf. Biometrics, 2015, pp. 208–213.

[10] A. Demontis, B. Biggio, G. Fumera, and F. Roli, “Super-sparse regres-
sion for fast age estimation from faces at test time,” in Proc. 18th Int.
Conf. Image Analysis and Processing, 2015, pp. 551–562.

[11] M. Melis, L. Piras, B. Biggio, G. Giacinto, G. Fumera, and F. Roli, “Fast
image classification with reduced multiclass support vector machines,”
in Proc. 18th Int. Conf. Image Analysis and Processing, 2015, pp. 78–88.

[12] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Royal Stat. Soc. (Ser. B), vol. 58, no. 1, pp. 267–288, 1996.

[13] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
Feb. 1970.

[14] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, “Large scale
multiple kernel learning,” J. Mach. Learn. Res., vol. 7, pp. 1531–1565,
Dec. 2006.

[15] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” J. Mach. Learn. Res.,
vol. 11, pp. 1109–1135, March 2010.

[16] K. Riesen, M. Neuhaus, and H. Bunke, “Graph embedding in vector
spaces by means of prototype selection,” in Proc. 6th Int. Conf. Graph-
Based Repr. in Patt. Rec., 2007, pp. 383–393.

[17] B. Spillmann, M. Neuhaus, H. Bunke, E. Pekalska, and R. P. W. Duin,
“Transforming strings to vector spaces using prototype selection,” in
Proc. Joint IAPR Int. Conf. Structural, Syntactic, and Stat. Patt. Rec.,
2006, pp. 287–296.

[18] A. Gisbrecht, B. Mokbel, and B. Hammer, “The Nyström approximation
for relational generative topographic mappings,” in NIPS Workshop on
Challenges of Data Visualization, 2010.

[19] E. Pȩkalska and B. Haasdonk, “Kernel discriminant analysis for positive
definite and indefinite kernels,” IEEE Trans. Patt. An. and Mach. Intell.,
vol. 31, no. 6, pp. 1017–1032, June 2009.

[20] R. J. Hathaway and J. C. Bezdek, “Nerf c-means: Non-euclidean
relational fuzzy clustering,” Patt. Rec., vol. 27, no. 3, pp. 429–437,
March 1994.

[21] D. O. Seaghdha and A. Copestake, “Using lexical and relational sim-
ilarity to classify semantic relations,” in Proc. 12th Conf. Assoc. for
Computational Linguistics, 2009, pp. 621–629.

[22] T. Pedersen, S. V. S. Pakhomov, S. Patwardhan, and C. G. Chute,
“Measures of semantic similarity and relatedness in the biomedical
domain,” J. of Biomedical Informatics, vol. 40, no. 3, pp. 288–299,
June 2007.

[23] T. Zhang, “Solving large scale linear prediction problems using stochas-
tic gradient descent algorithms,” in Proc. 21st Int. Conf. Mach. Learn.,
2004, pp. 116–123.

[24] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognitive
Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[25] K. Jonsson, J. Kittler, Y. Li, and J. Matas, “Support vector machines for
face authentication,” Image and Vision Comput., vol. 20, no. 5-6, pp.
369–375, April 2002.

[26] C.-C. Chang and C.-J. Lin, “LibSVM: A library for support vector
machines,” ACM Trans. Intelligent Systems and Technology, vol. 2, no.
3, pp. 5412–5475, April 2011.

[27] J. Beveridge, D. Bolme, B. Draper, and M. Teixeira, “The CSU face
identification evaluation system,” Machine Vision and Applications,
vol. 16, no. 2, pp. 128–138, Feb. 2005.

[28] S. S. Keerthi, O. Chapelle, and D. DeCoste, “Building support vector
machines with reduced classifier complexity,” J. Mach. Learn. Res.,
vol. 7, pp. 1493–1515, July 2006.

[29] Z. Wang, K. Crammer, and S. Vucetic, “Breaking the curse of kerneliza-
tion: Budgeted stochastic gradient descent for large-scale SVM training,”
in J. Mach. Learn. Res., vol. 13, pp. 3103–3131, Oct. 2012.

