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Abstract Support Vector Machines (SVMs) are among the most popular classifi-
cation techniques adopted in security applications like malware detection, intrusion
detection, and spam filtering. However, if SVMs are to be incorporated in real-world
security systems, they must be able to cope with attack patterns that can either mis-
lead the learning algorithm (poisoning), evade detection (evasion), or gain informa-
tion about their internal parameters (privacy breaches). The main contributions of
this chapter are twofold. First, we introduce a formal general framework for the em-
pirical evaluation of the security of machine-learning systems. Second, according to
our framework, we demonstrate the feasibility of evasion, poisoning and privacy at-
tacks against SVMs in real-world security problems. For each attack technique, we
evaluate its impact and discuss whether (and how) it can be countered through an
adversary-aware design of SVMs. Our experiments are easily reproducible thanks
to open-source code that we have made available, together with all the employed
datasets, on a public repository.
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1 Introduction

Machine-learning and pattern-recognition techniques are increasingly being adopted
in security applications like spam filtering, network intrusion detection, and mal-
ware detection due to their ability to generalize, and to potentially detect novel at-
tacks or variants of known ones. Support Vector Machines (SVMs) are among the
most successful techniques that have been applied for this purpose [28, 54].

However, learning algorithms like SVMs assume stationarity: that is, both the
data used to train the classifier and the operational data it classifies are sampled
from the same (though possibly unknown) distribution. Meanwhile, in adversarial
settings such as the above mentioned ones, intelligent and adaptive adversaries may
purposely manipulate data (violating stationarity) to exploit existing vulnerabilities
of learning algorithms, and to impair the entire system. This raises several open
issues, related to whether machine-learning techniques can be safely adopted in
security-sensitive tasks, or if they must (and can) be re-designed for this purpose. In
particular, the main open issues to be addressed include:
1. analyzing the vulnerabilities of learning algorithms;
2. evaluating their security by implementing the corresponding attacks; and
3. eventually, designing suitable countermeasures.

These issues are currently addressed in the emerging research area of adversarial
machine learning, at the intersection between computer security and machine learn-
ing. This field is receiving growing interest from the research community, as wit-
nessed by an increasing number of recent events: the NIPS Workshop on “Machine
Learning in Adversarial Environments for Computer Security” (2007) [43]; the sub-
sequent Special Issue of the Machine Learning journal titled “Machine Learning
in Adversarial Environments” (2010) [44]; the 2010 UCLA IPAM workshop on
“Statistical and Learning-Theoretic Challenges in Data Privacy”; the ECML-PKDD
Workshop on “Privacy and Security issues in Data Mining and Machine Learning”
(2010) [27]; five consecutive CCS Workshops on “Artificial Intelligence and Secu-
rity” (2008-2012) [2, 3, 34, 22, 19], and the Dagstuhl Perspectives Workshop on
“Machine Learning for Computer Security” (2012) [37].

In Section 2, we review the literature of adversarial machine learning, focusing
mainly on the issue of security evaluation. We discuss both theoretical work and
applications, including examples of how learning can be attacked in practical sce-
narios, either during its training phase (i.e., poisoning attacks that contaminate the
learner’s training data to mislead it) or during its deployment phase (i.e., evasion
attacks that circumvent the learned classifier).

In Section 3, we summarize our recently defined framework for the empirical
evaluation of classifiers’ security [12]. It is based on a general model of an ad-
versary that builds on previous models and guidelines proposed in the literature of
adversarial machine learning. We expound on the assumptions of the adversary’s
goal, knowledge and capabilities that comprise this model, which also easily ac-
commodate application-specific constraints. Having detailed the assumptions of his
adversary, a security analyst can formalize the adversary’s strategy as an optimiza-
tion problem.



Security Evaluation of SVMs in Adversarial Environments 3

We then demonstrate our framework by applying it to assess the security of
SVMs. We discuss our recently devised evasion attacks against SVMs [8] in Sec-
tion 4, and review and extend our recent work [14] on poisoning attacks against
SVMs in Section 5. We show that the optimization problems corresponding to the
above attack strategies can be solved through simple gradient-descent algorithms.
The experimental results for these evasion and poisoning attacks show that the SVM
is vulnerable to these threats for both linear and non-linear kernels in several realistic
application domains including handwritten digit classification and malware detec-
tion for PDF files. We further explore the threat of privacy-breaching attacks aimed
at the SVM’s training data in Section 6 where we apply our framework to precisely
describe the setting and threat model.

Our analysis provides useful insights into the potential security threats from the
usage of learning algorithms (and, particularly, of SVMs) in real-world applications,
and sheds light on whether they can be safely adopted for security-sensitive tasks.
The presented analysis allows a system designer to quantify the security risk entailed
by an SVM-based detector so that he may weigh it against the benefits provided by
the learning. It further suggests guidelines and countermeasures that may mitigate
threats and thereby improve overall system security. These aspects are discussed
for evasion and poisoning attacks in Sections 4 and 5. In Section 6 we focus on
developing countermeasures for privacy attacks that are endowed with strong theo-
retical guarantees within the framework of differential privacy. We conclude with a
summary and discussion in Section 7.

In order to support the reproducibility of our experiments, we published all the
code and the data employed for the experimental evaluations described in this pa-
per [24]. In particular, our code is released under open-source license, and carefully
documented, with the aim of allowing other researchers to not only reproduce, but
also customize, extend and improve our work.

2 Background

In this section, we review the main concepts used throughout this chapter. We first
introduce our notation and summarize the SVM learning problem. We then motivate
the need for the proper assessment of the security of a learning algorithm so that it
can be applied to security-sensitive tasks.

Learning can be generally stated as a process by which data is used to form
a hypothesis that performs better than an a priori hypothesis formed without the
data. For our purposes, the hypotheses will be represented as functions of the form
f : X → Y , which assign an input sample point x ∈X to a class y ∈ Y ; that is,
given an observation from the input space X , a hypothesis f makes a prediction
in the output space Y . For binary classification, the output space is binary and
we use Y = {−1,+1}. In the classical supervised learning setting, we are given a
paired training dataset {(xi,yi) | xi ∈X ,yi ∈ Y }n

i=1, we assume each pair is drawn
independently from an unknown joint distribution P(X,Y ), and we want to infer a
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classifier f able to generalize well on P(X,Y ); i.e., to accurately predict the label y
of an unseen sample x drawn from that distribution.

2.1 Support Vector Machines

In its simplest formulation, an SVM learns a linear classifier for a binary clas-
sification problem. Its decision function is thus f (x) = sign(w>x + b), where
sign(a) =+1 (−1) if a≥ 0 (a < 0), and w and b are learned parameters that specify
the position of the decision hyperplane in feature space: the hyperplane’s normal
w gives its orientation and b is its displacement. The learning task is thus to find a
hyperplane that well-separates the two classes. While many hyperplanes may suf-
fice for this task, the SVM hyperplane both separates the training samples of the
two classes and provides a maximum distance from itself to the nearest training
point (this distance is called the classifier’s margin), since maximum-margin learn-
ing generally reduces generalization error [65]. Although originally designed for
linearly-separable classification tasks (hard-margin SVMs), SVMs were extended to
non-linearly-separable classification problems by Vapnik [25] (soft-margin SVMs),
which allow some samples to violate the margin. In particular, a soft-margin SVM
is learned by solving the following convex quadratic program (QP):

min
w,b,ξ

1
2

w>w+C
n

∑
i=1

ξi

s. t. ∀ i = 1, . . . ,n yi(w>xi +b)≥ 1−ξi and ξi ≥ 0 ,

where the margin is maximized by minimizing 1
2 w>w, and the variables ξi (referred

to as slack variables) represent the extent to which the samples, xi, violate the mar-
gin. The parameter C tunes the trade-off between minimizing the sum of the slack
violation errors and maximizing the margin.

While the primal can be optimized directly, it is often solved via its (Lagrangian)
dual problem written in terms of Lagrange multipliers, αi, which are constrained so
that ∑

n
i=1 αiyi = 0 and 0 ≤ αi ≤C for i = 1, . . . ,n. Solving the dual has a computa-

tional complexity that grows according to the size of the training data as opposed to
the feature space’s dimensionality. Further, in the dual formulation, both the data and
the slack variables become implicitly represented—the data is represented by a ker-
nel matrix, K, of all inner products between pairs of data points (that is, Ki, j = x>i x j)
and each slack variable is associated with a Lagrangian multiplier via the KKT con-
ditions that arise from duality. Using the method of Lagrangian multipliers, the dual
problem is derived, in matrix form, as

min
α

1
2

α
>Qα−1>n α

s. t.
n

∑
i=1

αiyi = 0 and ∀ i = 1, . . . ,n 0≤ αi ≤C ,
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where Q = K ◦ yy> (the Hadamard product of K and yy>) and 1n is a vector of n
ones.

Through the kernel matrix, SVMs can be extended to more complex feature
spaces (where a linear classifier may perform better) via a kernel function—an im-
plicit inner product from the alternative feature space. That is, if some function
φ : X →Φ maps training samples into a higher-dimensional feature space, then Ki j
is computed via the space’s corresponding kernel function, κ(xi,x j) = φ(xi)

>φ(x j).
Thus, one need not explicitly know φ , only its corresponding kernel function.

Further, the dual problem and its KKT conditions elicit interesting properties
of the SVM. First, the optimal primal hyperplane’s normal vector, w, is a linear
combination of the training samples;1 i.e., w=∑

n
i=1 αiyixi. Second, the dual solution

is sparse, and only samples that lie on or within the hyperplane’s margin have a non-
zero α-value. Thus, if αi = 0, the corresponding sample xi is correctly classified, lies
beyond the margin (i.e., yi(w>xi+b)> 1) and is called a non-support vector. If αi =
C, the ith sample violates the margin (i.e., yi(w>xi +b)< 1) and is an error vector.
Finally, if 0 < αi <C, the ith sample lies exactly on the margin (i.e., yi(w>xi +b) =
1) and is a support vector. As a consequence, the optimal displacement b can be
determined by averaging yi−w>xi over the support vectors.

2.2 Machine Learning for Computer Security: Motivation, Trends,
and Arms Races

In this section, we motivate the recent adoption of machine-learning techniques in
computer security and discuss the novel issues this trend raises. In the last decade,
security systems increased in complexity to counter the growing sophistication and
variability of attacks; a result of a long-lasting and continuing arms race in security-
related applications such as malware detection, intrusion detection and spam filter-
ing. The main characteristics of this struggle and the typical approaches pursued
in security to face it are discussed in Section 2.3.1. We now discuss some exam-
ples that better explain this trend and motivate the use of modern machine-learning
techniques for security applications.

In the early years, the attack surface (i.e., the vulnerable points of a system)
of most systems was relatively small and most attacks were simple. In this era,
signature-based detection systems (e.g., rule-based systems based on string-match-
ing techniques) were considered sufficient to provide an acceptable level of secu-
rity. However, as the complexity and exposure of sensitive systems increased in the
Internet Age, more targets emerged and the incentive for attacking them became
increasingly attractive, thus providing a means and motivation for developing so-
phisticated and diverse attacks. Since signature-based detection systems can only
detect attacks matching an existing signature, attackers used minor variations of

1 This is an instance of the Representer Theorem which states that solutions to a large class of
regularized ERM problems lie in the span of the training data [60].
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their attacks to evade detection (e.g., string-matching techniques can be evaded by
slightly changing the attack code). To cope with the increasing variability of attack
samples and to detect never-before-seen attacks, machine-learning approaches have
been increasingly incorporated into these detection systems to complement tradi-
tional signature-based detection. These two approaches can be combined to make
accurate and agile detection: signature-based detection offers fast and lightweight
filtering of most known attacks, while machine-learning approaches can process the
remaining (unfiltered) samples and identify new (or less well-known) attacks.

The quest of image spam. A recent example of the above arms race is image
spam (see, e.g., [10]). In 2006, to evade the textual-based spam filters, spammers
began rendering their messages into images included as attachments, thus producing
“image-based spam,” or image spam for short. Due to the massive volume of image
spam sent in 2006 and 2007, researchers and spam-filter designers proposed several
different countermeasures. Initially, suspect images were analyzed by OCR tools to
extract text for standard spam detection, and then signatures were generated to block
the (known) spam images. However, spammers immediately reacted by randomly
obfuscating images with adversarial noise, both to make OCR-based detection inef-
fective, and to evade signature-based detection. The research community responded
with (fast) approaches mainly based on machine-learning techniques using visual
features extracted from images, which could accurately discriminate between spam
images and legitimate ones (e.g., photographs, plots, etc.). Although image spam
volumes have since declined, the exact cause for this decrease is debatable—these
countermeasures may have played a role, but the image spam were also more costly
to the spammer as they required more time to generate and more bandwidth to de-
liver, thus limiting the spammers’ ability to send a high volume of messages. Never-
theless, had this arms race continued, spammers could have attempted to evade the
countermeasures by mimicking the feature values exhibited by legitimate images,
which would have, in fact, forced spammers to increase the number of colors and
elements in their spam images thus further increasing the size of such files, and the
cost of sending them.

Misuse and anomaly detection in computer networks. Another example of
the above arms race can be found in network intrusion detection, where misuse de-
tection has been gradually augmented by anomaly detection. The former approach
relies on detecting attacks on the basis of signatures extracted from (known) intru-
sive network traffic, while the latter is based upon a statistical model of the normal
profile of the network traffic and detects anomalous traffic that deviates from the as-
sumed model of normality. This model is often constructed using machine-learning
techniques, such as one-class classifiers (e.g., one-class SVMs), or, more generally,
using density estimators. The underlying assumption of anomaly-detection-based
intrusion detection, though, is that all anomalous network traffic is, in fact, intru-
sive. Although intrusive traffic often does exhibit anomalous behavior, the opposite
is not necessarily true: some non-intrusive network traffic may also behave anoma-
lously. Thus, accurate anomaly detectors often suffer from high false-alarm rates.
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2.3 Adversarial Machine Learning

As witnessed by the above examples, the introduction of machine-learning tech-
niques in security-sensitive tasks has many beneficial aspects, and it has been some-
what necessitated by the increased sophistication and variability of recent attacks
and zero-day exploits. However, there is good reason to believe that machine-
learning techniques themselves will be subject to carefully designed attacks in the
near future, as a logical next step in the above-sketched arms race. Since machine-
learning techniques were not originally designed to withstand manipulations made
by intelligent and adaptive adversaries, it would be reckless to naively trust these
learners in a secure system. Instead, one needs to carefully consider whether these
techniques can introduce novel vulnerabilities that may degrade the overall system’s
security, or whether they can be safely adopted. In other words, we need to address
the question raised by Barreno et al. [5]: can machine learning be secure?

At the center of this question is the effect an adversary can have on a learner by
violating the stationarity assumption that the training data used to train the classi-
fier comes from the same distribution as the test data that will be classified by the
learned classifier. This is a conventional and natural assumption underlying much of
machine learning and is the basis for performance-evaluation-based techniques like
cross-validation and bootstrapping as well as for principles like empirical risk min-
imization (ERM). However, in security-sensitive settings, the adversary may pur-
posely manipulate data to mislead learning. Accordingly, the data distribution is
subject to change, thereby potentially violating non-stationarity, albeit, in a limited
way subject to the adversary’s assumed capabilities (as we discuss in Section 3.1.3).
Further, as in most security tasks, predicting how the data distribution will change
is difficult, if not impossible [12, 36]. Hence, adversarial learning problems are of-
ten addressed as a proactive arms race [12], in which the classifier designer tries to
anticipate the next adversary’s move, by simulating and hypothesizing proper attack
scenarios, as discussed in the next section.

2.3.1 Reactive and Proactive Arms Races

As mentioned in the previous sections, and highlighted by the examples in Sec-
tion 2.2, security problems are often cast as a long-lasting reactive arms race be-
tween the classifier designer and the adversary, in which each player attempts to
achieve his/her goal by reacting to the changing behavior of his/her opponent. For
instance, the adversary typically crafts samples to evade detection (e.g., a spammer’s
goal is often to create spam emails that will not be detected), while the classifier de-
signer seeks to develop a system that accurately detects most malicious samples
while maintaining a very low false-alarm rate; i.e., by not falsely identifying legit-
imate examples. Under this setting, the arms race can be modeled as the following
cycle [12]. First, the adversary analyzes the existing learning algorithm and manip-
ulates her data to evade detection (or more generally, to make the learning algorithm
ineffective). For instance, a spammer may gather some knowledge of the words used
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by the targeted spam filter to block spam and then manipulate the textual content of
her spam emails accordingly; e.g., words like “cheap” that are indicative of spam
can be misspelled as “che4p”. Second, the classifier designer reacts by analyzing
the novel attack samples and updating his classifier. This is typically done by re-
training the classifier on the newly collected samples, and/or by adding features that
can better detect the novel attacks. In the previous spam example, this amounts to
retraining the filter on the newly collected spam and, thus, to adding novel words
into the filter’s dictionary (e.g., “che4p” may be now learned as a spammy word).
This reactive arms race continues in perpetuity as illustrated in Figure 1.

Adversary Classifier designer 

1.  Analyze classifier 

2.  Devise attack 3.  Analyze attack 

4.  Develop countermeasure 
(e.g., add features, retraining) 

Fig. 1 A conceptual representation of the reactive arms race [12].

However, reactive approaches to this arms race do not anticipate the next gener-
ation of security vulnerabilities and thus, the system potentially remains vulnerable
to new attacks. Instead, computer security guidelines traditionally advocate a proac-
tive approach2—the classifier designer should proactively anticipate the adversary’s
strategy by (i) identifying the most relevant threats, (ii) designing proper counter-
measures into his classifier, and (iii) repeating this process for his new design before
deploying the classifier. This can be accomplished by modeling the adversary (based
on knowledge of the adversary’s goals and capabilities) and using this model to sim-
ulate attacks, as is depicted in Figure 2 to contrast the reactive arms race. While such
an approach does not account for unknown or changing aspects of the adversary, it
can indeed lead to an improved level of security by delaying each step of the re-
active arms race because it should reasonably force the adversary to exert greater
effort (in terms of time, skills, and resources) to find new vulnerabilities. Accord-
ingly, proactively designed classifiers should remain useful for a longer time, with
less frequent supervision or human intervention and with less severe vulnerabilities.

Although this approach has been implicitly followed in most of the previous
work (see Section 2.3.2), it has only recently been formalized within a more gen-
eral framework for the empirical evaluation of a classifier’s security [12], which
we summarize in Section 3. Finally, although security evaluation may suggest spe-
cific countermeasures, designing general-purpose secure classifiers remains an open
problem.

2 Although in certain abstract models we have shown how regret-minimizing online learning can
be used to define reactive approaches that are competitive with proactive security [6].
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Classifier designer Classifier designer 

1.  Model adversary 

2.  Simulate attack 3.  Evaluate attack’s impact 

4.  Develop countermeasure 
(if the attack has a relevant impact) 

Fig. 2 A conceptual representation of the proactive arms race [12].

2.3.2 Previous Work on Security Evaluation

Previous work in adversarial learning can be categorized according to the two main
steps of the proactive arms race described in the previous section. The first research
direction focuses on identifying potential vulnerabilities of learning algorithms and
assessing the impact of the corresponding attacks on the targeted classifier; e.g.,
[4, 5, 18, 36, 40, 41, 42, 46]. The second explores the development of proper coun-
termeasures and learning algorithms robust to known attacks; e.g., [26, 41, 57].

Although some prior work does address aspects of the empirical evaluation of
classifier security, which is often implicitly defined as the performance degrada-
tion incurred under a (simulated) attack, to our knowledge a systematic treatment
of this process under a unifying perspective was only first described in our recent
work [12]. Previously, security evaluation is generally conducted within a specific
application domain such as spam filtering and network intrusion detection (e.g., in
[26, 31, 41, 47, 66]), in which a different application-dependent criteria is sepa-
rately defined for each endeavor. Security evaluation is then implicitly undertaken
by defining an attack and assessing its impact on the given classifier. For instance,
in [31], the authors showed how camouflage network packets can mimic legitimate
traffic to evade detection; and, similarly, in [26, 41, 47, 66], the content of spam
emails was manipulated for evasion. Although such analyses provide indispensable
insights into specific problems, their results are difficult to generalize to other do-
mains and provide little guidance for evaluating classifier security in a different
application. Thus, in a new application domain, security evaluation often must be-
gin anew and it is difficult to directly compare with prior studies. This shortcoming
highlights the need for a more general set of security guidelines and a more system-
atic definition of classifier security evaluation, that we began to address in [12].

Apart from application-specific work, several theoretical models of adversarial
learning have been proposed [4, 17, 26, 36, 40, 42, 46, 53]. These models frame the
secure learning problem and provide a foundation for a proper security evaluation
scheme. In particular, we build upon elements of the models of [4, 5, 36, 38, 40, 42],
which were used in defining our framework for security evaluation [12]. Below we
summarize these foundations.
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2.3.3 A Taxonomy of Potential Attacks against Machine Learning Algorithms

A taxonomy of potential attacks against pattern classifiers was proposed in [4, 5, 36]
as a baseline to characterize attacks on learners. The taxonomy is based on three
main features: the kind of influence of attacks on the classifier, the kind of security
violation they cause, and the specificity of an attack. The attack’s influence can be
either causative, if it aims to undermine learning, or exploratory, if it targets the
classification phase. Accordingly, a causative attack may manipulate both training
and testing data, whereas an exploratory attack only affects testing data. Examples
of causative attacks include work in [14, 38, 40, 52, 58], while exploratory attacks
can be found in [26, 31, 41, 47, 66]. The security violation can be either an in-
tegrity violation, if it aims to gain unauthorized access to the system (i.e., to have
malicious samples be misclassified as legitimate); an availability violation, if the
goal is to generate a high number of errors (both false-negatives and false-positives)
such that normal system operation is compromised (e.g., legitimate users are denied
access to their resources); or a privacy violation, if it allows the adversary to obtain
confidential information from the classifier (e.g., in biometric recognition, this may
amount to recovering a protected biometric template of a system’s client). Finally,
the attack specificity refers to the samples that are affected by the attack. It ranges
continuously from targeted attacks (e.g., if the goal of the attack is to have a spe-
cific spam email misclassified as legitimate) to indiscriminate attacks (e.g., if the
goal is to have any spam email misclassified as legitimate).

Each portion of the taxonomy specifies a different type of attack as laid out in
Barreno et al. [4] and here we outline these with respect to a PDF malware detector.
An example of a causative integrity attack is an attacker who wants to mislead the
malware detector to falsely classify malicious PDFs as benign. The attacker could
accomplish this goal by introducing benign PDFs with malicious features into the
training set and the attack would be targeted if the features corresponded to a par-
ticular malware or otherwise an indiscriminate attack. Similarly, the attacker could
cause a causative availability attack by injecting malware training examples that
exhibited features common to benign messages; again, these would be targeted if
the attacker wanted a particular set of benign PDFs to be misclassified. A causative
privacy attack, however, would require both manipulation of the training and in-
formation obtained from the learned classifier. The attacker could inject malicious
PDFs with features identifying a particular author and then subsequently test if other
PDFs with those features were labeled as malicious; this observed behavior may
leak private information about the authors of other PDFs in the training set.

In contrast to the causative attacks, exploratory attacks cannot manipulate the
learner, but can still exploit the learning mechanism. An example of an exploratory
integrity attack involves an attacker who crafts a malicious PDF for an existing
malware detector. This attacker queries the detector with candidate PDFs to dis-
cover which attributes the detector uses to identify malware, thus, allowing her to
re-design her PDF to avoid the detector. This example could be targeted to a sin-
gle PDF exploit or indiscriminate if a set of possible exploits are considered. An
exploratory privacy attack against the malware detector can be conducted in the
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same way as the causative privacy attack described above, but without first inject-
ing PDFs into the training data. Simply by probing the malware detector with crafted
PDFs, the attacker may divulge secrets from the detector. Finally, exploratory
availability attacks are possible in some applications but are not currently consid-
ered to be of interest.

3 A Framework for Security Evaluation

In Sections 2.3 and 2.3.1, we motivated the need for simulating a proactive arms race
as a means for improving system security. We further argued that evaluating a classi-
fier’s security properties through simulations of different, potential attack scenarios
is a crucial step in this arms race for identifying the most relevant vulnerabilities
and for suggesting how to potentially counter them. Here, we summarize our recent
work [12] that proposes a new framework for designing proactive secure classifiers
by addressing the shortcomings of the reactive security cycle raised above. Namely,
our approach allows one to empirically evaluate a classifier’s security during its de-
sign phase by addressing the first three steps of the proactive arms race depicted in
Figure 2: (i) identifying potential attack scenarios, (ii) devising the corresponding
attacks, and (iii) systematically evaluating their impact. Although it may also sug-
gest countermeasures to the hypothesized attacks, the final step of the proactive arms
race remains unspecified as a unique design step that has to be addressed separately
in an application-specific manner.

Under our proposed security evaluation process, the analyst must clearly scruti-
nize the classifier by considering different attack scenarios to investigate a set of
distinct potential vulnerabilities. This amounts to performing a more systematic
what-if analysis of classifier security [56]. This is an essential step in the design
of security systems, as it not only allows the designer to identify the most important
and relevant threats, but also it forces him/her to consciously decide whether the
classifier can be reasonably deployed, after being made aware of the corresponding
risks, or whether it is instead better to adopt additional countermeasure to mitigate
the attack’s impact before deploying the classifier.

Our proposed framework builds on previous work and attempts to systematize
and unify their views under a more coherent perspective. The framework defines
how an analyst can conduct a security audit of a classifier, which we detail in the
remainder of this section. First, in Section 3.1, we explain how an adversary model
is constructed according to the adversary’s anticipated goals, knowledge and capa-
bilities. Based on this model, a simulation of the adversary can be conducted to find
the corresponding optimal attack strategies and produce simulated attacks, as de-
scribed in Section 3.1.4. These simulated attack samples are then used to evaluate
the classifier by either adding them to the training or test data, in accordance with the
adversary’s capabilities from Section 3.1.3. We conclude this section by discussing
how to exploit our framework in specific application domains in Section 3.2.
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3.1 Modeling the Adversary

The proposed model of the adversary is based on specific assumptions about her
goal, knowledge of the system, and capability to modify the underlying data distri-
bution by manipulating individual samples. It allows the classifier designer to model
the attacks identified in the attack taxonomy described as in Section 2.3.3 [4, 5, 36].
However, in our framework, one can also incorporate application-specific con-
straints into the definition of the adversary’s capability. Therefore, it can be ex-
ploited to derive practical guidelines for developing optimal attack strategies and to
guide the design of adversarially resilient classifiers.

3.1.1 Adversary’s Goal

According to the taxonomy presented first by Barreno et al. [5] and extended by
Huang et al. [36], the adversary’s goal should be defined based on the anticipated
security violation, which might be an integrity, availability, or privacy violation (see
Section 2.3.3), and also depending on the attack’s specificity, which ranges from
targeted to indiscriminate. Further, as suggested by Laskov and Kloft [42] and Kloft
and Laskov [40], the adversary’s goal should be defined in terms of an objective
function that the adversary is willing to maximize. This allows for a formal charac-
terization of the optimal attack strategy.

For instance, in an indiscriminate integrity attack, the adversary may aim to max-
imize the number of spam emails that evade detection, while minimally manipulat-
ing their content [26, 46, 53], whereas in an indiscriminate availability attack, the
adversary may aim to maximize the number of classification errors, thereby causing
a general denial-of-service due to an excess of false alarms [52, 14].

3.1.2 Adversary’s Knowledge

The adversary’s knowledge of the attacked system can be defined based on the
main components involved in the design of a machine learning system, as described
in [29] and depicted in Figure 3.

According to the five design steps depicted in Figure 3, the adversary may have
various degrees of knowledge (ranging from no information to complete informa-
tion) pertaining to the following five components:

(k.i) the training set (or part of it);
(k.ii) the feature representation of each sample; i.e., how real objects (emails, net-

work packets, etc.) are mapped into the feature space;
(k.iii) the learning algorithm and its decision function; e.g., that logistic regression

is used to learn a linear classifier;
(k.iv) the learned classifier’s parameters; e.g., the actual learned weights of a linear

classifier;
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Adversary model 
Knowledge 

1.  Training samples 
2.  Features 
3.  Learning algorithm and kind of decision function 
4.  Decision function and its parameters (trained classifier) 
5.  Feedback from the classifier 
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Fig. 3 A representation of the design steps of a machine learning system [29] that may
provide sources of knowledge for the adversary.

(k.v) feedback from the deployed classifier; e.g., the classification labels assigned
to some of the samples by the targeted classifier.

These five elements represent different levels of knowledge about the system be-
ing attacked. A typical hypothesized scenario assumes that the adversary has perfect
knowledge of the targeted classifier (k.iv). Although potentially too pessimistic, this
worst-case setting allows one to compute a lower bound on the classifier perfor-
mance when it is under attack [26, 41]. A more realistic setting is that the adver-
sary knows the (untrained) learning algorithm (k.iii), and she may exploit feedback
from the classifier on the labels assigned to some query samples (k.v), either to di-
rectly find optimal or nearly-optimal attack instances [46, 53], or to learn a surrogate
classifier, which can then serve as a template to guide the attack against the actual
classifier. We refer to this scenario as a limited knowledge setting in Section 4.

Note that one may also make more restrictive assumptions on the adversary’s
knowledge, such as considering partial knowledge of the feature representation
(k.ii), or a complete lack of knowledge of the learning algorithm (k.iii). Investigat-
ing classifier security against these uninformed adversaries may yield a higher level
of security. However, such assumptions would be contingent on security through
obscurity; that is, the provided security would rely upon secrets that must be kept
unknown to the adversary even though such a high level of secrecy may not be prac-
tical. Reliance on unjustified secrets can potentially lead to catastrophic unforeseen
vulnerabilities. Thus, this paradigm should be regarded as being complementary to
security by design, which instead advocates that systems should be designed from
the ground-up to be secure and, if secrets are assumed, they must be well-justified.
Accordingly, security is often investigated by assuming that the adversary knows at
least the learning algorithm and the underlying feature representation.

3.1.3 Adversary’s Capability

We now give some guidelines on how the attacker may be able to manipulate sam-
ples and the corresponding data distribution. As discussed in Section 2.3.3 [4, 5, 36],
the adversary may control both training and test data (causative attacks), or only on
test data (exploratory attacks). Further, training and test data may follow different
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distributions, since they can be manipulated according to different attack strategies
by the adversary. Therefore, we should specify:

(c.i) whether the adversary can manipulate training (TR) and/or testing (TS) data;
i.e., the attack influence from the taxonomy in [4, 5, 36]);

(c.ii) whether and to what extent the attack affects the class priors, for TR and TS;
(c.iii) which and how many samples can be modified in each class, for TR and TS;
(c.iv) which features of each attack sample can be modified and how can these

features’ values be altered; e.g., correlated feature values can not be modified
independently.

Assuming a generative model p(X,Y ) = p(Y )p(X|Y ) (where we use ptr and pts
for training and test distributions, respectively), assumption (c.ii) specifies how an
attack can modify the priors ptr(Y ) and pts(Y ) while assumptions (c.iii) and (c.iv)
specifies how it can alter the class-conditional distributions ptr(X|Y ) and pts(X|Y ).

To perform security evaluation according to the hypothesized attack scenario,
it is thus clear that the collected data and generated attack samples should be re-
sampled according to the above distributions to produce suitable training and test
set pairs. This can be accomplished through existing resampling algorithms like
cross-validation or bootstrapping, when the attack samples are independently sam-
pled from an identical distribution (i.i.d.). Otherwise, one may consider different
sampling schemes. For instance, in Biggio et al. [14] the attack samples had to be
injected into the training data, and each attack sample depended on the current train-
ing data, which also included past attack samples. In this case, it was sufficient to
add one attack sample at a time, until the desired number of samples was reached.3

3.1.4 Attack Strategy

Once specific assumptions on the adversary’s goal, knowledge, and capability are
made, one can compute the optimal attack strategy corresponding to the hypoth-
esized attack scenario; i.e., the adversary model. This amounts to solving the op-
timization problem defined according to the adversary’s goal, under proper con-
straints defined in accordance with the adversary’s assumed knowledge and capa-
bilities. The attack strategy can then be used to produce the desired attack samples,
which then have to be merged consistently to the rest of the data to produce suitable
training and test sets for the desired security evaluation, as explained in the previ-
ous section. Specific examples of how to derive optimal attacks against SVMs, and
how to resample training and test data to properly include them are discussed in
Sections 4 and 5.

3 See [12] for more details on the definition of the data distribution and the resampling algorithm.
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3.2 How to use our Framework

We summarize here the steps that can be followed to correctly use our framework
in specific application scenarios:
1. hypothesize an attack scenario by identifying a proper adversary’s goal, and

according to the taxonomy in [4, 5, 36];
2. define the adversary’s knowledge according to (k.i-v), and capabilities accord-

ing to (c.i-iv);
3. formulate the corresponding optimization problem and devise the correspond-

ing attack strategy;
4. resample the collected (training and test) data accordingly;
5. evaluate classifier’s security on the resampled data (including attack samples);
6. repeat the evaluation for different levels of adversary’s knowledge and/or capa-

bilities, if necessary; or hypothesize a different attack scenario.
In the next sections we show how our framework can be applied to investigate

three security threats to SVMs: evasion, poisoning, and privacy violations. We then
discuss how our findings may be used to improve the security of such classifiers to
the considered attacks. For instance, we show how careful kernel parameter selec-
tion, which trades off between security to attacks and classification accuracy, may
complicate the adversary’s task of subverting the learning process.

4 Evasion Attacks against SVMs

In this section, we consider the problem of SVM evasion at test time; i.e., how
to optimally manipulate samples at test time to avoid detection. The problem of
evasion at test time has been considered in previous work, albeit either limited to
simple decision functions such as linear classifiers [26, 46], or to cover any convex-
inducing classifiers [53] that partition the feature space into two sets, one of which
is convex, but do not include most interesting families of non-linear classifiers such
as neural nets or SVMs. In contrast to this prior work, the methods presented in
our recent work [8] and in this section demonstrate that evasion of kernel-based
classifiers at test time can be realized with a straightforward gradient-descent-based
approach derived from Golland’s technique of discriminative directions [33]. As a
further simplification of the attacker’s effort, we empirically show that, even if the
adversary does not precisely know the classifier’s decision function, she can learn a
surrogate classifier on a surrogate dataset and reliably evade the targeted classifier.

This section is structured as follows. In Section 4.1, we define the model of the
adversary, including her attack strategy, according to our evaluation framework de-
scribed in Section 3.1. Then, in Section 4.2 we derive the attack strategy that will be
employed to experimentally evaluate evasion attacks against SVMs. We report our
experimental results in Section 4.3. Finally, we critically discuss and interpret our
research findings in Section 4.4.
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4.1 Modeling the Adversary

We show here how our framework can be applied to evaluate the security of SVMs
against evasion attacks. We first introduce our notation, state our assumptions about
attack scenario, and then derive the corresponding optimal attack strategy.

Notation. We consider a classification algorithm f : X 7→ Y that assigns sam-
ples represented in some feature space x ∈X to a label in the set of predefined
classes y ∈ Y = {−1,+1}, where −1 (+1) represents the legitimate (malicious)
class. The label fx = f (x) given by a classifier is typically obtained by thresholding
a continuous discriminant function g : X 7→ R. Without loss of generality, we as-
sume that f (x) =−1 if g(x)< 0, and +1 otherwise. Further, note that we use fx to
refer to a label assigned by the classifier for the point x (rather than the true label y
of that point) and the shorthand fi for the label assigned to the ith training point, xi.

4.1.1 Adversary’s Goal

Malicious (positive) samples are manipulated to evade the classifier. The adversary
may be satisfied when a sample x is found such that g(x) < −ε where ε > 0 is a
small constant. However, as mentioned in Section 3.1.1, these attacks may be easily
defeated by simply adjusting the decision threshold to a slightly more conservative
value (e.g., to attain a lower false negative rate at the expense of a higher false posi-
tive rate). For this reason, we assume a smarter adversary, whose goal is to have her
attack sample misclassified as legitimate with the largest confidence. Analytically,
this statement can be expressed as follows: find an attack sample x that minimizes
the value of the classifier’s discriminant function g(x). Indeed, this adversarial set-
ting provides a worst-case bound for the targeted classifier.

4.1.2 Adversary’s Knowledge

We investigate two adversarial settings. In the first, the adversary has perfect knowl-
edge (PK) of the targeted classifier; i.e., she knows the feature space (k.ii) and func-
tion g(x) (k.iii-iv). Thus, the labels from the targeted classifier (k.v) are not needed.
In the second, the adversary is assumed to have limited knowledge (LK) of the
classifier. We assume she knows the feature representation (k.ii) and the learning
algorithm (k.iii), but that she does not know the learned classifier g(x) (k.iv). In both
cases, we assume the attacker does not have knowledge of the training set (k.i).

Within the LK scenario, the adversary does not know the true discriminant func-
tion g(x) but may approximate it as ĝ(x) by learning a surrogate classifier on a
surrogate training set {(xi,yi)}

nq
i=1 of nq samples. This data may be collected by the

adversary in several ways; e.g., she may sniff network traffic or collect legitimate
and spam emails from an alternate source. Thus, for LK, there are two sub-cases
related to assumption (k.v), which depend on whether the adversary can query the
classifier. If so, the adversary can build the training set by submitting a set of nq
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queries xi to the targeted classifier to obtain their classification labels, yi = f (xi).
This is indeed the adversary’s true learning task, but it requires her to have access to
classifier feedback; e.g., by having an email account protected by the targeted filter
(for public email providers, the adversary can reasonably obtain such accounts). If
not, the adversary may use the true class labels for the surrogate data, although this
may not correctly approximate the targeted classifier (unless it is very accurate).

4.1.3 Adversary’s Capability

In the evasion setting, the adversary can only manipulate testing data (c.i); i.e., she
has no way to influence training data. We further assume here that the class priors
can not be modified (c.ii), and that all the malicious testing samples are affected by
the attack (c.iii). In other words, we are interested in simulating an exploratory, in-
discriminate attack. The adversary’s capability of manipulating the features of each
sample (c.iv) should be defined based on application-specific constraints. However,
at a more general level we can bound the attack point to lie within some maximum
distance from the original attack sample, dmax, which then is a parameter of our
evaluation. Similarly to previous work, the definition of a suitable distance measure
d : X ×X 7→R is left to the specific application domain [26, 46, 53]. Note indeed
that this distance should reflect the adversary’s effort or cost in manipulating sam-
ples, by considering factors that can limit the overall attack impact; e.g., the increase
in the file size of a malicious PDF, since larger files will lower the infection rate due
to increased transmission times. For spam filtering, distance is often given as the
number of modified words in each spam [26, 46, 52, 53], since it is assumed that
highly modified spam messages are less effectively able to convey the spammer’s
message.

4.1.4 Attack Strategy

Under the attacker’s model described in Sections 4.1.1, 4.1.2 and 4.1.3, for any tar-
get malicious sample x0 (the adversary’s true objective), an optimal attack strategy
finds a sample x∗ to minimize g or its estimate ĝ, subject to a bound on its modifi-
cation distance from x0:

x∗ = argmin
x

ĝ(x) s.t. d(x,x0)≤ dmax .

For several classifiers, minimizing g(x) is equivalent to maximizing the estimated
posterior p( fx = −1|x); e.g., for neural networks, since they directly output a pos-
terior estimate, and for SVMs, since their posterior can be estimated as a sigmoidal
function of the distance of x to the SVM hyperplane [55].

Generally, this is a non-linear optimization, which one may optimize with many
well-known techniques (e.g., gradient descent, Newton’s method, or BFGS) and
below we use a gradient descent procedure. However, if ĝ(x) is not convex, descent
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approaches may not find a global optima. Instead, the descent path may lead to a
flat region (local minimum) outside of the samples’ support where p(x)≈ 0 and the
classification behavior of g is unspecified and may stymie evasion attempts (see the
upper left plot in Figure 4).

g(x) − λ p(x|yc=−1), λ=0
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Fig. 4 Different scenarios for gradient-descent-based evasion procedures. In each, the function
g(x) of the learned classifier is plotted with a color map with high values (red-orange-yellow)
corresponding to the malicious class, low values (green-cyan-blue) corresponding to the benign
class, and a black decision boundary for the classifier. For every malicious sample, we plot the path
of a simple gradient descent evasion for a classifier with a closed boundary around the malicious
class (upper left) or benign class (bottom left). Then, we plot the modified objective function of
Equation (1) and the paths of the resulting density-augmented gradient descent for a classifier with
a closed boundary around the malicious (upper right) or benign class (bottom right).

Unfortunately, our objective does not utilize the evidence we have about the dis-
tribution of data p(x), and thus gradient descent may meander into unsupported
regions (p(x) ≈ 0) where g is relatively unspecified. This problem is further com-
pounded since our estimate ĝ is based on a finite (and possibly small) training set
making it a poor estimate of g in unsupported regions, which may lead to false
evasion points in these regions. To overcome these limitations, we introduce an ad-
ditional component into the formulation of our attack objective, which estimates
p(x| fx = −1) using density-estimation techniques. This second component acts as
a penalizer for x in low density regions and is weighted by a parameter λ ≥ 0 yield-
ing the following modified optimization problem:

argmin
x

E(x) = ĝ(x)− λ

n ∑
i| fi=−1

k
( x−xi

h

)
(1)

s.t. d(x,x0)≤ dmax ,
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where h is a bandwidth parameter for a kernel density estimator (KDE), and n is the
number of benign samples ( fx = −1) available to the adversary. This alternate ob-
jective trades off between minimizing ĝ(x) (or p( fx = −1|x)) and maximizing the
estimated density p(x| fx = −1). The extra component favors attack points to imi-
tate features of known samples classified as legitimate, as in mimicry attacks [31]. In
doing so, it reshapes the objective function and thereby biases the resulting density-
augmented gradient descent towards regions where the negative class is concen-
trated (see the bottom right plot in Figure 4).

Finally, note that this behavior may lead our technique to disregard attack pat-
terns within unsupported regions (p(x)≈ 0) for which g(x)< 0, when they do exist
(see, e.g., the upper right plot in Figure 4). This may limit classifier evasion es-
pecially when the constraint d(x,x0) ≤ dmax is particularly strict. Therefore, the
trade-off between the two components of the objective function should be carefully
considered.

4.2 Evasion Attack Algorithm

Algorithm 1 details a gradient-descent method for optimizing problem of Equa-
tion (1). It iteratively modifies the attack point x in the feature space as x′← x−t∇E,
where ∇E is a unit vector aligned with the gradient of our objective function, and t is
the step size. We assume g to be differentiable almost everywhere (subgradients may
be used at discontinuities). When g is non-differentiable or is not smooth enough for
a gradient descent to work well, it is also possible to rely upon the mimicry / KDE
term in the optimization of Equation (1).

Algorithm 1 Gradient-descent attack procedure
Input: the initial attack point, x0; the step size, t; the trade-off parameter, λ ; and ε > 0.
Output: x∗, the final attack point.

1: k← 0.
2: repeat
3: k← k+1
4: Set ∇E(xk−1) to a unit vector aligned with ∇g(xk−1)−λ∇p(xk−1| fx =−1).
5: xk← xk−1− t∇E(xk−1)
6: if d(xk,x0)> dmax then
7: Project xk onto the boundary of the feasible region (enforcing application-specific con-

straints, if any).
8: end if
9: until E

(
xk
)
−E

(
xk−1

)
< ε

10: return: x∗ = xk

In the next sections, we show how to compute the components of ∇E; namely,
the gradient of the discriminant function g(x) of SVMs for different kernels, and the
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gradient of the mimicking component (density estimation). We finally discuss how
to project the gradient ∇E onto the feasible region in discrete feature spaces.

4.2.1 Gradient of Support Vector Machines

For SVMs, g(x) = ∑i αiyik(x,xi) + b. The gradient is thus given by ∇g(x) =
∑i αiyi∇k(x,xi). Accordingly, the feasibility of the approach depends on the com-
putability of this kernel gradient ∇k(x,xi), which is computable for many numeric
kernels. In the following, we report the kernel gradients for three main cases: (a) the
linear kernel, (b) the RBF kernel, and (c) the polynomial kernel.

(a) Linear kernel. In this case, the kernel is simply given by k(x,xi) = 〈x,xi〉.
Accordingly, ∇k(x,xi) = xi (we remind the reader that the gradient has to be com-
puted with respect to the current attack sample x), and ∇g(x) = w = ∑i αiyixi.

(b) RBF kernel. For this kernel, k(x,xi) = exp{−γ‖x− xi‖2}. The gradient is
thus given by ∇k(x,xi) =−2γ exp{−γ‖x−xi‖2}(x−xi).

(c) Polynomial kernel. In this final case, k(x,xi) = (〈x,xi〉+ c)p. The gradient
is thus given by ∇k(x,xi) = p(〈x,xi〉+ c)p−1xi.

4.2.2 Gradients of Kernel Density Estimators

As with SVMs, the gradient of kernel density estimators depends on the gradient of
its kernel. We considered generalized RBF kernels of the form

k
( x−xi

h

)
= exp

(
− d(x,xi)

h

)
,

where d(·, ·) is any suitable distance function. We used here the same distance d(·, ·)
used in Equation (1), but they can be different, in general. For `2- and `1-norms (i.e.,
RBF and Laplacian kernels), the KDE (sub)gradients are respectively given by:

− 2
nh ∑

i| fi=−1
exp
(
−‖x−xi‖2

2
h

)
(x−xi) ,

− 1
nh ∑

i| fi=−1
exp
(
−‖x−xi‖1

h

)
(x−xi) .

Note that the scaling factor here is proportional to O( 1
nh ). Therefore, to influence

gradient descent with a significant mimicking effect, the value of λ in the objective
function should be chosen such that the value of λ

nh is comparable to (or higher than)
the range of the discriminant function ĝ(x).
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4.2.3 Gradient Descent Attack in Discrete Spaces

In discrete spaces, gradient approaches may lead to a path through infeasible por-
tions of the feature space. In such cases, we need to find feasible neighbors x
that yield a steepest descent; i.e., maximally decreasing E(x). A simple approach
to this problem is to probe E at every point in a small neighborhood of x: x′ ←
argminz∈N (x) E(z). However, this approach requires a large number of queries. For
classifiers with a differentiable decision function, we can instead use the neighbor
whose difference from x best aligns with ∇E(x); i.e., the update becomes

x′← arg max
z∈N (x)

(z−x)
‖z−x‖

>
∇E(x) .

Thus, the solution to the above alignment is simply to modify a feature that satisfies
argmaxi |∇E(x)i| for which the corresponding change leads to a feasible state. Note
however that, sometimes, such a step may be relatively quite large, and may lead the
attack out of a local minimum potentially increasing the objective function. There-
fore, one should consider the best alignment that effectively reduces the objective
function by disregarding features that lead to states where the objective function is
higher.

4.3 Experiments

In this section, we first report some experimental results on the MNIST handwritten
digit classification task [32, 45], that visually demonstrate how the proposed algo-
rithm modifies digits to mislead classification. This dataset is particularly useful
because the visual nature of the handwritten digit data provides a semantic mean-
ing for attacks. We then show the effectiveness of the proposed attack on a more
realistic and practical scenario: the detection of malware in PDF files.

4.3.1 Handwritten Digits

We first focus on a two-class sub-problem of discriminating between two distinct
digits from the MNIST dataset [45]. Each digit example is represented as a gray-
scale image of 28× 28 pixels arranged in raster-scan-order to give feature vectors
of d = 28× 28 = 784 values. We normalized each feature (pixel) x f ∈ [0,1]d by
dividing its value by 255, and we constrained the attack samples to this range. Ac-
cordingly, we optimized Equation (1) subject to 0≤ x f ≤ 1 for all f .

For our attacker, we assume the perfect knowledge (PK) attack scenario. We used
the Manhattan distance (`1-norm) as the distance function, d, both for the kernel
density estimator (i.e., a Laplacian kernel) and for the constraint d(x,x0)≤ dmax of
Equation (1), which bounds the total difference between the gray level values of
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the original image x0 and the attack image x. We used an upper bound of dmax =
5000
255 to limit the total change in the gray-level values to 5000. At each iteration, we

increased the `1-norm value of x−x0 by 10
255 , which is equivalent to increasing the

difference in the gray level values by 10. This is effectively the gradient step size.
For the digit discrimination task, we applied an SVM with the linear kernel

and C = 1. We randomly chose 100 training samples and applied the attacks to a
correctly-classified positive sample.
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Fig. 5 Illustration of the gradient attack on the MNIST digit data, for λ = 0 (top row) and λ = 10
(bottom row). Without a mimicry component (λ = 0) gradient descent quickly decreases g but the
resulting attack image does not resemble a “7”. In contrast, the attack minimizes g slower when
mimicry is applied (λ = 10) but the final attack image closely resembles a mixture between “3”
and “7”, as the term “mimicry” suggests.

In Figure 5 we illustrate gradient attacks in which a “3” is to be misclassified as
a “7”. The left image shows the initial attack point, the middle image shows the first
attack image misclassified as legitimate, and the right image shows the attack point
after 500 iterations. When λ = 0, the attack images exhibit only a weak resemblance
to the target class “7” but are, nevertheless, reliably misclassified. This is the same
effect we observed in the left plot of Figure 4: the classifier is evaded by making the
attack sample dissimilar to the malicious class. Conversely, when λ = 10 the attack
images strongly resemble the target class because the mimicry term favors samples
that are more similar to the target examples. This is the same effect illustrated in the
rightmost plot of Figure 4.



Security Evaluation of SVMs in Adversarial Environments 23

4.3.2 Malware Detection in PDF Files

We focus now on the problem of discriminating between legitimate and malicious
PDF files, a popular medium for disseminating malware [67]. PDF files are ex-
cellent vectors for malicious-code, due to their flexible logical structure, which
can described by a hierarchy of interconnected objects. As a result, an attack can
be easily hidden in a PDF to circumvent file-type filtering. The PDF format fur-
ther allows a wide variety of resources to be embedded in the document including
JavaScript, Flash, and even binary programs. The type of the embedded ob-
ject is specified by keywords, and its content is in a data stream. Several recent
works proposed machine-learning techniques for detecting malicious PDFs use the
file’s logical structure to accurately identify the malware [49, 62, 63]. In this case
study, we use the feature representation of Maiorca et al. [49] in which each feature
corresponds to the tally of occurrences of a given keyword in the PDF file. Similar
feature representations were also exploited in [62, 63].

The PDF application imposes natural constraints on attacks. Although it is diffi-
cult to remove an embedded object (and its corresponding keywords) without cor-
rupting the PDF’s file structure, it is rather easy to insert new objects (and, thus,
keywords) through the addition of a new version to the PDF file [1]. In our feature
representation, this is equivalent to allowing only feature increments,;i.e., requiring
x0≤ x as an additional constraint in the optimization problem given by Equation (1).
Further, the total difference in keyword counts between two samples is their Man-
hattan distance, which we again use for the kernel density estimator and the con-
straint in Equation (1). Accordingly, dmax is the maximum number of additional
keywords that an attacker can add to the original x0.

Experimental setup. For experiments, we used a PDF corpus with 500 malicious
samples from the Contagio dataset4 and 500 benign samples collected from the
web. We randomly split the data into five pairs of training and testing sets with 500
samples each to average the final results. The features (keywords) were extracted
from each training set as described in [49]; on average, 100 keywords were found
in each run. Further, we also bounded the maximum value of each feature (keyword
count) to 100, as this value was found to be close to the 95th percentile for each
feature. This limited the influence of outlying samples having very high feature
values.

We simulated the perfect knowledge (PK) and the limited knowledge (LK) sce-
narios described in Section 4.1.2. In the LK case, we set the number of samples
used to learn the surrogate classifier to nq = 100. The reason is to demonstrate that
even with a dataset as small as the 20% of the original training set size, the adver-
sary may be able to evade the targeted classifier with high reliability. Further, we
assumed that the adversary uses feedback from the targeted classifier f ; i.e., the la-
bels ŷi = fi = f (xi) for each surrogate sample xi. Similar results were also obtained
using the true labels (without relabeling), since the targeted classifiers correctly clas-
sified almost all samples in the test set.

4 http://contagiodump.blogspot.it
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As discussed in Section 4.2.2, the value of λ is chosen according to the scale
of the discriminant function g(x), the bandwidth parameter h of the kernel density
estimator, and the number of samples n labeled as legitimate in the surrogate training
set. For computational reasons, to estimate the value of the KDE at a given point x
in the feature space, we only consider the 50 nearest (legitimate) training samples
to x; therefore n ≤ 50 in our case. The bandwidth parameter was set to h = 10, as
this value provided a proper rescaling of the Manhattan distances observed in our
dataset for the KDE. We thus set λ = 500 to be comparable with O(nh).

For each targeted classifier and training/testing pair, we learned five different sur-
rogate classifiers by randomly selecting nq samples from the test set, and averaged
their results. For SVMs, we sought a surrogate classifier that would correctly match
the labels from the targeted classifier; thus, we used parameters C = 100, and γ = 0.1
(for the RBF kernel) to heavily penalize training errors.

Experimental results. We report our results in Figure 6, in terms of the false neg-
ative (FN) rate attained by the targeted classifiers as a function of the maximum
allowable number of modifications, dmax ∈ [0,50]. We compute the FN rate corre-
sponding to a fixed false positive (FP) rate of FP= 0.5%. For dmax = 0, the FN rate
corresponds to a standard performance evaluation using unmodified PDFs. As ex-
pected, the FN rate increases with dmax as the PDF is increasingly modified, since
the adversary has more flexibility in his attack. Accordingly, a more secure classifier
will exhibit a more graceful increase of the FN rate.
Results for λ = 0. We first investigate the effect of the proposed attack in the PK
case, without considering the mimicry component (Figure 6, top row), for varying
parameters of the considered classifiers. The linear SVM (Figure 6, top-left plot) is
almost always evaded with as few as 5 to 10 modifications, independent of the regu-
larization parameter C. It is worth noting that attacking a linear classifier amounts to
always incrementing the value of the same highest-weighted feature (corresponding
to the /Linearized keyword in the majority of the cases) until it is bounded.
This continues with the next highest-weighted non-bounded feature until termina-
tion. This occurs simply because the gradient of g(x) does not depend on x for a
linear classifier (see Section 4.2.1). With the RBF kernel (Figure 6, top-right plot),
SVMs exhibit a similar behavior with C = 1 and various values of its γ parameter,5

and the RBF SVM provides a higher degree of security compared to linear SVMs
(cf. top-left plot and middle-left plot in Figure 6).

In the LK case, without mimicry (Figure 6, middle row), classifiers are evaded
with a probability only slightly lower than that found in the PK case, even when only
nq = 100 surrogate samples are used to learn the surrogate classifier. This aspect
highlights the threat posed by a skilled adversary with incomplete knowledge: only
a small set of samples may be required to successfully attack the target classifier
using the proposed algorithm.
Results for λ = 500. When mimicry is used (Figure 6, bottom row), the success of
the evasion of linear SVMs (with C = 1) decreases both in the PK (e.g., compare the

5 We also conducted experiments using C = 0.1 and C = 100, but did not find significant differences
compared to the presented results using C = 1.
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Fig. 6 Experimental results for SVMs with the linear and the RBF kernel (first and second col-
umn). We report the FN values (attained at FP=0.5%) for increasing dmax. For the sake of read-
ability, we report the average FN value ± half standard deviation (shown with error bars). Results
for perfect knowledge (PK) attacks with λ = 0 (without mimicry) are shown in the first row, for
different values of the considered classifier parameters, i.e., the regularization parameter C for the
linear SVM, and the kernel parameter γ for the SVM with RBF kernel (with C = 1). Results for
limited knowledge (LK) attacks with λ = 0 (without mimicry) are shown in the second row for the
linear SVM (for varying C), and the SVM with RBF kernel (for varying γ , with C = 1). Results for
perfect (PK) and limited knowledge (LK) with λ = 500 (with mimicry) are shown in the third row
for the linear SVM (with C = 1), and the SVM with RBF kernel (with γ = 1 and C = 1).

blue curve in the top-left plot with the solid blue curve in the bottom-left plot) and
LK case (e.g., compare the blue curve in the middle-left plot with the dashed blue
curve in the bottom-left plot). The reason is that the computed direction tends to lead
to a slower descent; i.e., a less direct path that often requires more modifications to
evade the classifier. In the non-linear case (Figure 6, bottom-right plot), instead,
mimicking exhibits some beneficial aspects for the attacker, although the constraint
on feature addition may make it difficult to properly mimic legitimate samples. In
particular, note how the targeted SVMs with RBF kernel (with C = 1 and γ = 1) in
the PK case (e.g., compare the blue curve in the top-right plot with the solid blue
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curve in the bottom-right plot) is evaded with a significantly higher probability than
in the case when λ = 0. The reason is that a pure descent strategy on g(x) may find
local minima (i.e., attack samples) that do not evade detection, while the mimicry
component biases the descent towards regions of the feature space more densely
populated by legitimate samples, where g(x) eventually attains lower values. In the
LK case (e.g., compare the blue curve in the middle-right plot with the dashed blue
curve in the bottom-right plot), however, mimicking does not exhibit significant
improvements.

Analysis. Our attacks raise questions about the feasibility of detecting malicious
PDFs solely based on logical structure. We found that /Linearized, /OpenAc-
tion, /Comment, /Root and /PageLayout were among the most commonly
manipulated keywords. They indeed are found mainly in legitimate PDFs, but can
be easily added to malicious PDFs by the versioning mechanism. The attacker can
simply insert comments inside the malicious PDF file to augment its /Comment
count. Similarly, she can embed legitimate OpenAction code to add /OpenAction
keywords or she can add new pages to insert /PageLayout keywords.

In summary, our analysis shows that even detection systems that accurately clas-
sify non-malicious data can be significantly degraded with only a few malicious
modifications. This aspect highlights the importance of developing detection sys-
tems that are accurate, but also designed to be robust against adversarial manipula-
tion of attack instances.

4.4 Discussion

In this section, we proposed a simple algorithm that allows for evasion of SVMs
with differentiable kernels, and, more generally, of any classifier with a differen-
tiable discriminant function. We investigated the attack effectiveness in the case
of perfect knowledge of the attacked system. Further, we empirically showed that
SVMs can still be evaded with high probability even if the adversary can only learn a
classifier’s copy on surrogate data (limited knowledge). We believe that the proposed
attack formulation can easily be extended to classifiers with non-differentiable dis-
criminant functions as well, such as decision trees and k-nearest neighbors.

Our analysis also suggests some ideas for improving classifier security. In par-
ticular, when the classifier tightly encloses the legitimate samples, the adversary
must increasingly mimic the legitimate class to evade (see Figure 4), and this may
not always be possible; e.g., malicious network packets or PDF files still need to
embed a valid exploit, and some features may be immutable. Accordingly, a guide-
line for designing secure classifiers is that learning should encourage a tight enclo-
sure of the legitimate class; e.g., by using a regularizer that penalizes classifying
“blind spots”—regions with low p(x)—as legitimate. Generative classifiers can be
modified, by explicitly modeling the attack distribution, as in [11], and discrimina-
tive classifiers can be modified similarly by adding generated attack samples to the
training set. However, these security improvements may incur higher FP rates.
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In the above applications, the feature representations were invertible; i.e., there
is a direct mapping from the feature vectors x to a corresponding real-world sam-
ple (e.g., a spam email, or PDF file). However, some feature mappings can not be
trivially inverted; e.g., n-gram analysis [31]. In these cases, one may modify the
real-world object corresponding to the initial attack point at each step of the gradi-
ent descent to obtain a sample in the feature space that as close as possible to the
sample that would be obtained at the next attack iteration. A similar technique has
been already exploited in to address the pre-image problem of kernel methods [14].

Other interesting extensions include (i) considering more effective strategies such
as those proposed by [46, 53] to build a small but representative set of surrogate
data to learn the surrogate classifier and (ii) improving the classifier estimate ĝ(x);
e.g.using an ensemble technique like bagging to average several classifiers [16].

5 Poisoning Attacks against SVMs

In the previous section, we devised a simple algorithm that allows for evasion of
classifiers at test time and showed experimentally how it can be exploited to evade
detection by SVMs and kernel-based classification techniques. Here we present an-
other kind of attack, based on our work in [14]. Its goal is to force the attacked
SVM to misclassify as many samples as possible at test time through poisoning of
the training data, that is, by injecting well-crafted attack samples into the training
set. Note that, in this case, the test data is assumed not to be manipulated by the
attacker.

Poisoning attacks are staged during classifier training, and they can thus target
adaptive or online classifiers, as well as classifiers that are being re-trained on data
collected during test time, especially if in an unsupervised or semi-supervised man-
ner. Examples of these attacks, besides our work [14], can be found in [13, 7, 9, 39,
40, 52, 58]. They include specific application examples in different areas, such as
intrusion detection in computer networks [7, 39, 40, 58], spam filtering [7, 52], and,
most recently, even biometric authentication [9, 13].

In this section, we follow the same structure of Section 4. In Section 5.1, we de-
fine the adversary model according to our framework; then, in Sections 5.1.4 and 5.2
we respectively derive the optimal poisoning attack and the corresponding algo-
rithm; and, finally, in Sections 5.3 and 5.4 we report our experimental findings and
discuss the results.

5.1 Modeling the Adversary

Here, we apply our framework to evaluate security against poisoning attacks. As
with the evasion attacks in Section 4.1, we model the attack scenario and derive the
corresponding optimal attack strategy for poisoning.
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Notation. In the following, we assume that an SVM has been trained on a dataset
Dtr = {xi,yi}n

i=1 with xi ∈ Rd and yi ∈ {−1,+1}. The matrix of kernel values be-
tween two sets of points is denoted with K, while Q = K ◦ yy> denotes its label-
annotated version, and α denotes the SVM’s dual variables corresponding to each
training point. Depending on the value of αi, the training points are referred to as
margin support vectors (0 < αi < C, set S ), error support vectors (αi = C, set E )
or reserve vectors (αi = 0, set R). In the sequel, the lower-case letters s,e,r are
used to index the corresponding parts of vectors or matrices; e.g., Qss denotes the
sub-matrix of Q corresponding to the margin support vectors.

5.1.1 Adversary’s Goal

For a poisoning attack, the attacker’s goal is to find a set of points whose addition to
Dtr maximally decreases the SVM’s classification accuracy. For simplicity, we start
considering the addition of a single attack point (x∗,y∗). The choice of its label y∗ is
arbitrary but fixed. We refer to the class of this chosen label as attacking class and
the other as the attacked class.

5.1.2 Adversary’s Knowledge

According to Section 3.1.2, we assume that the adversary knows the training sam-
ples (k.i), the feature representation (k.ii), that an SVM learning algorithm is used
(k.iii) and the learned SVM’s parameters (k.iv), since they can be inferred by the
adversary by solving the SVM learning problem on the known training set. Finally,
we assume that no feedback is exploited by the adversary (k.v).

These assumptions amount to considering a worst-case analysis that allows us to
compute the maximum error rate that the adversary can inflict through poisoning.
This is indeed useful to check whether and under what circumstances poisoning may
be a relevant threat for SVMs.

Although having perfect knowledge of the training data is very difficult in prac-
tice for an adversary, collecting a surrogate dataset sampled from the same distri-
bution may not be that complicated; for instance, in network intrusion detection
an attacker may easily sniff network packets to build a surrogate learning model,
which can then be poisoned under the perfect knowledge setting. The analysis of
this limited knowledge poisoning scenario is however left to future work.

5.1.3 Adversary’s Capability

According to Section 3.1.3, we assume that the attacker can manipulate only training
data (c.i), can manipulate the class prior and the class-conditional distribution of the
attack point’s class y∗ by essentially adding a number of attack points of that class
into the training data, one at a time (c.ii-iii), and can alter the feature values of the
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attack sample within some lower and upper bounds (c.iv). In particular, we will
constrain the attack point to lie within a box, that is xlb ≤ x≤ xub.

5.1.4 Attack Strategy

Under the above assumptions, the optimal attack strategy amounts to solving the
following optimization problem:

x∗ = argmaxx P(x) = ∑
m
k=1(1− yk fx(xk))+ =

m

∑
k=1

(−gk)+ (2)

s.t. xlb ≤ x≤ xub , (3)

where the hinge loss has to be maximized on a separate validation set Dval =
{xk,yk}m

k=1 to avoid considering a further regularization term in the objective func-
tion. The reason is that the attacker aims to maximize the SVM generalization error
and not only its empirical estimate on the training data.

5.2 Poisoning Attack Algorithm

In this section, we assume the role of the attacker and develop a method for opti-
mizing x∗ according to Equation (2). Since the objective function is non-linear, we
use a gradient-ascent algorithm, where the attack vector is initialized by cloning an
arbitrary point from the attacked class and flipping its label. This initialized attack
point (at iteration 0) is denoted by x0. In principle, x0 can be any point sufficiently
deep within the attacking class’s margin. However, if this point is too close to the
boundary of the attacking class, the iteratively adjusted attack point may become a
reserve point, which halts further progress.

The computation of the gradient of the validation error crucially depends on the
assumption that the structure of the sets S , E and R does not change during the
update. In general, it is difficult to determine the largest step t along the gradient
direction ∇P, which preserves this structure. Hence, the step t is fixed to a small
constant value in our algorithm. After each update of the attack point xp, the op-
timal solution can be efficiently recomputed from the solution on Dtr, using the
incremental SVM machinery [20]. The algorithm terminates when the change in the
validation error is smaller than a predefined threshold.

5.2.1 Gradient Computation

We now discuss how to compute the gradient ∇P of our objective function. For
notational convenience, we now refer to the attack point as xc instead of x.
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Algorithm 2 Poisoning attack against an SVM
Input: Dtr, the training data; Dval, the validation data; y∗, the class label of the attack point; x0, the
initial attack point; t, the step size.
Output: x∗, the final attack point.
1: {αi,b}← learn an SVM on Dtr.
2: p← 0.
3: repeat
4: Re-compute the SVM solution on Dtr∪{xp,y∗} using the incremental SVM [20]. This step

requires {αi,b}. If computational complexity is manageable, a full SVM can be learned at
each step, instead.

5: Compute ∇P on Dval according to Equation (8).
6: Normalize ∇P to have unit norm.
7: p← p+1 and xp← xp−1 + t∇P
8: if xlb > xp or xp > xub then
9: Project xp onto the boundary of the feasible region (enforce application-specific con-

straints, if any).
10: end if
11: until P(xp)−P

(
xp−1

)
< ε

12: return: x∗ = xp

First, we explicitly account for all terms in the margin conditions gk that are
affected by the attack point xc:

gk = ∑
j

Qk jα j + ykb−1 (4)

= ∑
j 6=c

Qk jα j(xc)+Qkc(xc)αc(xc)+ ykb(xc)−1 .

As already mentioned, P(xc) is a non-convex objective function, and we thus exploit
a gradient ascent technique to iteratively optimize it. We denote the initial location
of the attack point as x0

c . Our goal is to update the attack point as xp
c = x(p−1)

c + t∇P
where p is the current iteration, ∇P is a unit vector representing the attack direction
(i.e., the normalized objective gradient), and t is the step size. To maximize our
objective, the attack direction ∇P is computed at each iteration.

Although the hinge loss is not everywhere differentiable, this can be overcome
by only considering point indices k with non-zero contributions to P; i.e., those for
which −gk > 0. Contributions of such points to ∇P can be computed by differenti-
ating Equation (4) with respect to xc using the product rule:

∂gk

∂xc
= Qks

∂α

∂xc
+

∂Qkc

∂xc
αc + yk

∂b
∂xc

, (5)

where, by denoting the lth feature of xc as xcl , we use the notation

∂α

∂xc
=


∂α1
∂xc1
· · · ∂α1

∂xcd
...

. . .
...

∂αs
∂xc1
· · · ∂αs

∂xcd

 , simil.
∂Qkc

∂xc
,

∂b
∂xc

.
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The expressions for the gradient can be further refined using the fact that the
gradient step must preserve the optimal SVM solution. This can expressed as an
adiabatic update condition using the technique introduced in [20]. In particular, for
the ith training point, the KKT conditions of the optimal SVM solution are:

gi = ∑
j∈Dtr

Qi jα j + yib−1


> 0; i ∈R

= 0; i ∈S

< 0; i ∈ E

(6)

h = ∑ j∈Dtr (y jα j) = 0 . (7)

The form of these conditions implies that an infinitesimal change in the attack point
xc causes a smooth change in the optimal solution of the SVM, under the restriction
that the composition of the sets S , E and R remains intact. This equilibrium allows
us to predict the response of the SVM solution to the variation of xc, as shown below.

By differentiation of the xc-dependent terms in Equations (6)–(7) with respect to
each feature xcl (1≤ l ≤ d), we obtain, for any i ∈S ,

∂g
∂xcl

= Qss
∂α

∂xcl
+

∂Qsc

∂xcl
αc + ys

∂b
∂xcl

= 0

∂h
∂xcl

= y>s
∂α

∂xcl
= 0 .

Solving these equations and computing an inverse matrix via the Sherman-Morrison-
Woodbury formula [48] yields the following gradients:

∂α

∂xc
=− 1

ζ
αc(ζ Q−1

ss −υυ
>) · ∂Qsc

∂xc

∂b
∂xc

=− 1
ζ

αcυ
> · ∂Qsc

∂xc
,

where υ = Q−1
ss ys and ζ = y>s Q−1

ss ys. We thus obtain the following gradient of the
objective used for optimizing our attack, which only depends on xc through gradi-
ents of the kernel matrix, ∂Qkc

∂xc
:

∇P =
m

∑
k=1

{
Mk

∂Qsc

∂xc
+

∂Qkc

∂xc

}
αc , (8)

where Mk =− 1
ζ
(Qks(ζ Q−1

ss −υυT )+ ykυT ).
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5.2.2 Kernelization

From Equation (8), we see that the gradient of the objective function at iteration
p may depend on the attack point xp

c = xp−1
c + t∇P only through the gradients of

the matrix Q. In particular, this depends on the chosen kernel. We report below the
expressions of these gradients for three common kernels (see Section 4.2.1):
• Linear kernel: ∂Kic

∂xc
= ∂ (xi·xc)

∂xc
= xi

• Polynomial kernel: ∂Kic
∂xc

= ∂ (xi·xc+R)d

∂xc
= d(xi ·xc +R)d−1xi

• RBF kernel: ∂Kic
∂xc

= ∂e−γ||xi−xc||2

∂xc
= 2γK(xi,xc)(xi−xc)

The dependence of these gradients on the current attack point, xc, can be avoided
by using the previous attack point, provided that t is sufficiently small. This approxi-
mation enables a straightforward extension of our method to arbitrary differentiable
kernels.

5.3 Experiments

The experimental evaluation presented in the following sections demonstrates the
behavior of our proposed method on an artificial two-dimensional dataset and
evaluates its effectiveness on the classical MNIST handwritten digit recognition
dataset [32, 45].

5.3.1 Two-dimensional Toy Example

Here we consider a two-dimensional example in which each class follows a Gaus-
sian with mean and covariance matrices given by µ− = [−1.5,0], µ+ = [1.5,0],
Σ− = Σ+ = 0.6I. The points from the negative distribution have label −1 (shown as
red in subsequent figures) and otherwise +1 (shown as blue). The training and the
validation sets, Dtr and Dval, consist of 25 and 500 points per class, respectively.

In the experiment presented below, the red class is the attacking class. That is,
a random point of the blue class is selected and its label is flipped to serve as the
starting point for our method. Our gradient ascent method is then used to refine this
attack until its termination condition is satisfied. The attack’s trajectory is traced
as the black line in Figure 7 for both the linear kernel (upper two plots) and the
RBF kernel (lower two plots). The background of each plot depicts an error surface:
hinge loss computed on a validation set (leftmost plots) and the classification error
(rightmost plots). For the linear kernel, the range of attack points is limited to the box
x ∈ [−4,4]2 shown as a dashed line. This implements the constraint of Equation (3).

For both kernels, these plots show that our gradient ascent algorithm finds a rea-
sonably good local maximum of the non-convex error surface. For the linear ker-
nel, it terminates at the corner of the bounded region, since the error surface is un-
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Fig. 7 Behavior of the gradient-based attack strategy on the Gaussian datasets, for the linear (top
row) and the RBF kernel (bottom row) with γ = 0.5. The regularization parameter C was set to 1
in both cases. The solid black line represents the gradual shift of the attack point xp

c toward a local
maximum. The hinge loss and the classification error are shown in colors, to appreciate that the
hinge loss provides a good approximation of the classification error. The value of such functions
for each point x ∈ [−5,5]2 is computed by learning an SVM on Dtr ∪{x,y = −1} and evaluating
its performance on Dval. The SVM solution on the clean data Dtr, and the training data itself,
are reported for completeness, highlighting the support vectors (with black circles), the decision
hyperplane and the margin bounds (with black lines).

bounded. For the RBF kernel, it also finds a good local maximum of the hinge loss
which, incidentally, is the maximum classification error within this area of interest.

5.3.2 Handwritten Digits

We now quantitatively validate the effectiveness of the proposed attack strategy on
the MNIST handwritten digit classification task [32, 45], as with the evasion attacks
in Section 4.3. In particular, we focus here on the following two-class sub-problems:
7 vs. 1; 9 vs. 8; 4 vs. 0. Each digit is normalized as described in Section 4.3.1. We
consider again a linear SVM with C = 1. We randomly sample a training and a
validation data of 100 and 500 samples, respectively, and retain the complete testing
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Fig. 8 Modifications to the initial (mislabeled) attack point performed by the proposed attack
strategy, for the three considered two-class problems from the MNIST dataset. The increase in
validation and testing errors across different iterations is also reported.

data given by MNIST for Dts. Although it varies for each digit, the size of the testing
data is about 2000 samples per class (digit).

Figure 8 shows the effect of single attack points being optimized by our descent
method. The leftmost plots of each row show the example of the attacked class used
as starting points in our algorithm. The middle plots show the final attack point. The
rightmost plots depict the increase in the validation and testing errors as the attack
progresses. For this experiment we run the attack algorithm 5 times by re-initializing
the gradient ascent procedure, and we retain the best result.

Visualizing the attack points reveals that these attacks succeed by blurring the
initial prototype to appear more like examples of the attacking class. In comparing
the initial and final attack points, we see that the bottom segment of the 7 straightens
to resemble a 1, the lower segment of the 9 is rounded to mimicking an 8, and ovular
noise is added to the outer boundary of the 4 to make it similar to a 0. These blurred
images are thus consistent with one’s natural notion of visually confusing digits.

The rightmost plots further demonstrate a striking increase in error over the
course of the attack. In general, the validation error overestimates the classification
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error due to a smaller sample size. Nonetheless, in the exemplary runs reported in
this experiment, a single attack data point caused the classification error to rise from
initial error rates of 2–5% to 15–20%. Since our initial attack points are obtained by
flipping the label of a point in the attacked class, the errors in the first iteration of the
rightmost plots of Figure 8 are caused by single random label flips. This confirms
that our attack can achieve significantly higher error rates than random label flips,
and underscores the vulnerability of the SVM to poisoning attacks.

The latter point is further illustrated in a multiple point, multiple run experiment
presented in Figure 9. For this experiment, the attack was extended by repeatedly
injecting attack points into the same class and averaging results over multiple runs
on randomly chosen training and validation sets of the same size (100 and 500 sam-
ples, respectively). These results exhibit a steady rise in classification error as the
percentage of attack points in the training set increases. The variance of the error is
quite high, which can be attributed to the relatively small sizes of the training and
validation sets. Also note that, in this experiment, to reach an error rate of 15–20%,
the adversary needs to control at least 4–6% of the training data, unlike in the single
point attacks of Figure 8. This is because Figure 8 displays the best single point
attack from five restarts whereas here initial points are selected without restarts.

5.4 Discussion

The poisoning attack presented in this section, summarized from our previous work
in [14], is a first step toward the security analysis of SVM against training data
attacks. Although our gradient ascent method is not optimal, it attains a surprisingly
large impact on the SVM’s classification accuracy.

Several potential improvements to the presented method remain to be explored
in future work. For instance, one may investigate the effectiveness of such an attack
with surrogate data, that is, when the training data is not known to the adversary, who
may however collect samples drawn from the same distribution to learn a classifier’s
copy (similarly to the limited knowledge case considered in the evasion attacks of
Section 4). Another improvement may be to consider the simultaneous optimization
of multi-point attacks, although we have already demonstrated that greedy, sequen-
tial single-point attacks may be rather successful.

An interesting analysis of the SVM’s vulnerability to poisoning suggested from
this work is to consider the attack’s impact under loss functions other than the hinge
loss. It would be especially interesting to analyze bounded loss functions, like the
ramp loss, since such losses are designed to limit the impact of any single (attack)
point on the outcome. On the other hand, while these losses may lead to improved
security to poisoning, they also make the SVM’s optimization problem non-convex,
and, thus, more computationally demanding. This may be viewed as another trade-
off between computational complexity of the learning algorithm and security.

An important practical limitation of the proposed method is the assumption that
the attacker controls the labels of injected points. Such assumptions may not hold
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Fig. 9 Results of the multi-point, multi-run experiments on the MNIST dataset. In each plot, we
show the classification errors due to poisoning as a function of the percentage of training contami-
nation for both the validation (red solid line) and testing sets (black dashed line). The top-left plot
is for the 7 vs.1 task, the top-right plot is for the 9 vs. 8 task, and the bottom-middle plot is for the
4 vs. 0 task.

if the labels are assigned by trusted sources such as humans, e.g., anti-spam filters
use their users’ labeling of messages as ground truth. Thus, although an attacker can
send arbitrary messages, he cannot guarantee that they will have the labels necessary
for his attack. This imposes an additional requirement that the attack data must
satisfy certain side constraints to fool the labeling oracle. Further work is needed to
understand and incorporate these potential side constraints into attacks.

6 Privacy Attacks against SVMs

We now consider a third scenario in which the attacker’s goal is to affect a breach of
the training data’s confidentiality. We review our recent work [59] deriving mech-
anisms for releasing SVM classifiers trained on privacy-sensitive data while main-
taining the data’s privacy. Unlike previous sections, our focus here lies primary in
the study of countermeasures, while we only briefly consider attacks in the context
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of lower bounds. We adopt the formal framework of Dwork et al. [30], in which a
randomized mechanism is said to preserve β -differential privacy, if the likelihood
of the mechanism’s output changes by at most β when a training datum is changed
arbitrarily (or even removed). The power of this framework, which gained near-
universal favor after its introduction, is that it quantifies privacy in a rigorous way
and provides strong guarantees even against powerful adversaries with knowledge
of almost all of the training data, knowledge of the mechanism (barring its source
of randomness), arbitrary access to the classifier output by the mechanism, and the
ability to manipulate almost all training data prior to learning.

This section is organized as follows. In Section 6.1 we outline our model of the
adversary, which makes only weak assumptions. Section 6.2 provides background
on differential privacy, presents a mechanism for training and releasing privacy-
preserving SVMs—essentially a countermeasure to many privacy attacks—and pro-
vides guarantees on differential privacy and also utility (e.g., controlling the classi-
fier’s accuracy). We then briefly touch on existing approaches for evaluation via
lower bounds and discuss other work and open problems in Section 6.3.

6.1 Modeling the Adversary

We first apply our framework to define the threat model for defending against pri-
vacy attacks within the broader context of differential privacy. We then focus on
specific countermeasures in the form of modifications to SVM learning that provide
differential privacy.

6.1.1 Adversary’s Goal

The ultimate goal of the attacker in this section is to determine features and/or the
label of an individual training datum. The overall approach of the adversary towards
this goal, is to inspect (arbitrary numbers of) test-time classifications made by a
released classifier trained on the data, or by inspecting the classifier directly. The
definition of differential privacy, and the particular mechanisms derived here, can
be modified for related goals of determining properties of several training data; we
focus on the above conventional case without loss of generality.

6.1.2 Adversary’s Knowledge

As alluded to above, we endow our adversary with significant knowledge of the
learning system, so as to derive countermeasures that can withstand very strong at-
tacks. Indeed the notion of differential privacy, as opposed to more syntactic notions
of privacy such as k-anonymity [64], was inspired by decades-old work in cryp-
tography that introduced mathematical formalism to an age-old problem, yielding
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significant practical success. Specifically, we consider a scenario in which the adver-
sary has complete knowledge of the raw input feature representation, the learning
algorithm (the entire mechanism including the form of randomization it introduces,
although not the source of randomness) and the form of its decision function (in this
case, a thresholded SVM), the learned classifier’s parameters (the kernel/feature
mapping, primal weight vector, and bias term), and arbitrary/unlimited feedback
from the deployed classifier (k.ii-v). We grant the attacker near complete knowledge
of the training set (k.i): the attacker may have complete knowledge of all but one
training datum, for which she has no knowledge of input feature values or its train-
ing label, and it is these attributes she wishes to reveal. For simplicity of exposition,
but without loss of generality, we assume this to be the last datum in the training
sample.

6.1.3 Adversary’s Capability

Like our assumptions on the attacker’s knowledge, we impose weak limitations on
the adversary’s capability. We assume an adversary that can manipulate both train-
ing and test data (c.i), although the latter is subsumed by the attacker’s complete
knowledge of the decision function and learned parameters—e.g., she may imple-
ment her own classifier and execute it arbitrarily, or she may submit or manipulate
test points presented to a deployed classifier.

Our attack model makes no assumptions about the origins of the training or
test data. The data need not be sampled independently or even according to a
distribution—the definition of differential privacy provided below makes worst-case
assumptions about the training data, and again the test data could be arbitrary. Thus
the adversary may have arbitrary capability to modify class priors, training data
features and labels (c.ii-iv) except that the adversary attacking the system may not
directly modify the targeted training datum because she does not have knowledge
of it. That said, however, differential privacy makes worst-case (no distributional)
assumptions about the datum and thus one could consider even this data point as
being adversarially manipulated by nature (i.e., nature does not collude with the at-
tacker to share information about the target training datum, but that may collude to
facilitate a privacy breach by selecting a “convenient” target datum).

6.1.4 Attack Strategy

While no practical privacy attacks on SVMs have been explored in the past—an
open problem discussed in Section 6.3—a general approach would be to approxi-
mate the inversion of the learning map on the released SVM parametrization (either
primal weight vector, or dual variables) around the known portion of the training
data. In practice this could be achieved by taking a similar approach as done in Sec-
tion 5 whereby an initial guess of a missing training point is iterated on by taking
gradient steps of the differential in the SVM parameter vector with respect to the
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missing training datum. An interpretation of this approach is one of simulation: to
guess a missing training datum, given access to the remainder of the training set
and the SVM solution on all the data, simulate the SVM on guesses for the missing
datum, updating the guesses in directions that appropriately shift the intermediate
solutions. As we discuss briefly in the sequel, theoretical lower bounds on achiev-
able privacy relate to attacks in pathological cases.

6.2 Countermeasures with Provable Guarantees

Given an adversary with such strong knowledge and capabilities as described above,
it may seem difficult to provide effective countermeasures particularly considering
the complication of abundant access to side information that is often used in pub-
licized privacy attacks [51, 64]. However, the crux that makes privacy-preservation
under these conditions possible lies in the fact that the learned quantity being re-
leased is an aggregate statistic of the sensitive data; intuitively the more data being
aggregated, the less sensitive a statistic should be to changes or removal of any single
datum. We now present results from our recent work that quantifies this effect [59],
within the framework of differential privacy.

6.2.1 Background on Differential Privacy

We begin by recalling the key definition due to Dwork et al. [30]. First, for any
training set D = {(xi,yi)}n

i=1 denote set D ′ to be a neighbor of D (or D ′ ∼ D) if
D ′ = {(xi,yi)}n−1

i=1 ∪{(x′n,y′n)} where (xn,yn) 6= (x′n,y′n). In the present context, dif-
ferential privacy is a desirable property of learning maps, which maps a training set
{(xi,yi)}n

i=1 to a continuous discriminant function of the form g : X → R—here a
learned SVM—in some space of functions, H . We say that a randomized6 learning
map L preserves β -differential privacy if for all datasets D , all neighboring sets D ′

of D , and all possible functions g ∈H , the following relation holds

Pr(L (D) = g) ≤ exp(β )Pr(L (D ′) = g) .

Intuitively, if we initially fix a training set and neighboring training set, differen-
tial privacy simply says that the two resulting distributions induced on the learned
functions are point-wise close—and closer for smaller β . For a patient deciding
whether to submit her datum to a training set for a cancer detector, differential pri-
vacy means that the learned classifier will reveal little information about that datum.
Even an adversary with access to the inner-workings of the learner, with access to

6 That is, the learning map’s output is not a deterministic function of the training data. The proba-
bility in the definition of differential privacy is due to this randomness. Our treatment here is only
as complex as necessary, but to be completely general, the events in the definition should be on
measurable sets G⊂H rather than individual g ∈H .
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all other patients’ data, and with the ability to guess-and-simulate the learning pro-
cess repeatedly with various possible values of her datum, cannot reverse engineer
her datum from the classifier released by the hospital because the adversary cannot
distinguish the classifier distribution on one training set, from that on neighboring
sets. Moreover, variations of this definition (which do not significantly affect the
presented results) allow for neighboring databases to be defined as those missing a
datum; or having several varying data, not just a single one.

For simplicity of exposition, we drop the explicit bias term b from our SVM
learning process and instead assume that the data feature vectors are augmented
with a unit constant, and that the resulting additional normal weight component
corresponds to the bias. This is an equivalent SVM formulation that allows us to
focus only on the normal’s weight vector.

A classic route to establish differential privacy is to define a randomized map L
that returns the value of a deterministic, non-random L̂ plus a noise term. Typically,
we use an exponential family in a term that matches an available Lipschitz condition
satisfied by L̂ : in our case, for learning maps that return weight vectors in Rd , we
aim to measure global sensitivity of L̂ via the L1 norm as

∆(L̂ ) = max
D ,D ′∼D

∥∥L̂ (D)− L̂ (D ′)
∥∥

1 .

With respect to this sensitivity, we can easily prove that the randomized mechanism

L (D) = L̂ (D)+Laplace(0,∆(L̂ )/β ) ,

is β -differential private.7 The well-established proof technique [30] follows from
the definition of the Laplace distribution involving the same norm as used in our
measure of global sensitivity, and the triangle inequality: for any training set D ,
D ′ ∼D , response g ∈H , and privacy parameter β

Pr(L (D) = g)
Pr(L (D ′) = g)

=
exp
(∥∥L̂ (D ′)−g

∥∥
1 β/∆(L̂ )

)
exp
(∥∥L̂ (D)−g

∥∥
1 β/∆(L̂ )

)
≤ exp

(∥∥L̂ (D ′)− L̂ (D)
∥∥

1 β/∆(L̂ )
)

≤ exp(β ) .

We take the above route to develop a differentially-private SVM. As such, the onus
is on calculating the SVM’s global sensitivity, ∆(L̂ ).

6.2.2 Global Sensitivity of Linear SVM

Unlike much prior work applying the “Laplace mechanism” to achieving differen-
tial privacy, in which studied estimators are often decomposed as linear functions of

7 Recall that the zero-mean multi-variate Laplace distribution with scale parameter s has density
proportional to exp(−‖x‖1/s).
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Algorithm 3 Privacy-preserving SVM
Input: D the training data; C > 0 soft-margin parameter; kernel k inducing a feature space with
finite dimension F and κ-bounded L2-norm; privacy parameter β > 0.
Output: learned weight vector w .
1: ŵ← learn an SVM with parameter C and kernel k on data D .
2: µ ← draw i.i.d. sample of F scalars from Laplace

(
0, 4Cκ

√
F

β

)
.

3: return: w = ŵ+µ

data [15], measuring the sensitivity of the SVM appears to be non-trivial owing to
the non-linear influence an individual training datum may have on the learned SVM.
However, perturbations of the training data were studied by the learning-theory com-
munity in the context of algorithmic stability: there the goal is to establish bounds
on classifier risk, from stability of the learning map, as opposed to leveraging com-
binatorial properties of the hypothesis class (e.g., the VC dimension, which is not
always possible to control, and for the RBF kernel SVM is infinite) [61]. In recent
work [59], we showed how these existing stability measurements for the SVM can
be adapted to provide the following L1-global sensitivity bound.

Lemma 1. Consider SVM learning with a kernel corresponding to linear SVM in a
feature space with finite-dimension F and L2-norm bounded8 by κ , with hinge loss
(as used throughout this chapter), and chosen parameter C > 0. Then the L1 global
sensitivity of the resulting normal weight vector is upper-bounded by 4Cκ

√
F.

We omit the proof, which is available in the original paper [59] and which follows
closely the previous measurements for algorithmic stability. We note that the result
extends to any convex Lipschitz loss.

6.2.3 Differentially-Private SVMs

So far we have established that Algorithm 3, which learns an SVM and returns the
resulting weight vector with added Laplace noise, preserves β -differential privacy.
More noise is added to the weight vector when either (i) a higher degree of privacy
is desired (smaller β ), (ii) the SVM fits closer to the data (higher C) or (iii) the data
is more distinguishable (higher κ or F—the curse of dimensionality). Hidden in
the above is the dependence on n: typically we take C to scale like 1/n to achieve
consistency in which case we see that noise decreases with larger training data—
akin to less individual influence—as expected [59].

Problematic in the above approach, is the destruction to utility due to preserving
differential privacy. One approach to quantifying this effect, involves bounding the
following notion of utility [59]. We say a privacy-preserving learning map L has
(ε,δ )-utility with respect to non-private map L̂ if for all training sets D ,

8 That is ∀x, k(x,x)≤ κ2; e.g. for the RBF the norm is uniformly unity κ = 1; more generally, we
can make the standard assumption that the data lies within some κ L2-ball.
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Pr
(∥∥L (D)− L̂ (D)

∥∥
∞
≤ ε
)
≥ 1−δ .

The norm here is in the function space of continuous discriminators, learned by
the learning maps, and is the point-wise L∞ norm which corresponds to ‖g‖∞ =
supx |g(x)|—although for technical reasons we will restrict the supremum to be over
a set M to be specified later. Intuitively, this indicates that the continuous predic-
tions of the learned private classifier are close to those predictions of the learned
non-private classifier, for all test points in M , with high probability (again, in the
randomness due to the private mechanism). This definition draws parallels with PAC
learnability, and in certain scenarios is strictly stronger than requiring that the private
learner achieves good risk (i.e., PAC learns) [59]. Using the Chernoff tail inequality
and known moment-generating functions, we establish the following bound on the
utility of this private SVM [59].

Theorem 1. The β -differentially-private SVM of Algorithm 3 achieves (ε,δ )-utility
with respect to the non-private SVM run with the same C parameter and kernel, for
0 < δ < 1 and

ε ≥ 8CκΦ
√

F
(

F + log
1
δ

)
/β ,

where the set M supporting the supremum in the definition of utility is taken to be
the pre-image of the feature mapping on the L∞ ball of radius Φ > 0.9

As expected, the more confidence δ or privacy β required, the less accuracy is
attainable. Similarly, when the training data is fitted more tightly via higher C, or
when the data is less tightly packed for higher κ,Φ ,F , less accuracy is possible.
Note that like the privacy result, this result can hold for quite general loss functions.

6.3 Discussion

In this section, we have provided a summary of our recent results on strong counter-
measures to privacy attacks on the SVM. We have shown how, through controlled
addition of noise, SVM learning in finite-dimensional feature spaces can pro-
vide both privacy and utility guarantees. These results can be extended to certain
translation-invariant kernels including the infinite-dimensional RBF [59]. This ex-
tension borrows a technique from large-scale learning where finding a dual solution
of the SVM for large training data size n is infeasible. Instead, a primal SVM prob-
lem is solved using a random kernel that uniformly approximates the desired kernel.
Since the approximating kernel induces a feature mapping of relatively small, finite
dimensions, the primal solution becomes feasible. For privacy preservation, we use
the same primal approach but with this new kernel. Fortunately, the distribution of

9 Above we previously bounded the L2 norms of points in features space by κ , the additional bound
on the L∞ norm here is for convenience and is standard practice in learning-theoretic results.
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the approximating kernel is independent of the training data, and thus we can reveal
the approximating kernel without sacrificing privacy. Likewise the uniform approx-
imation of the kernel composes with the utility result here to yield an analogous
utility guarantee for translation-invariant kernels.

While we demonstrated here a mechanism for private SVM learning with upper
bounds on privacy and utility, we have previously also studied lower bounds that
expose limits on the achievable utility of any learner that provides a given level of
differential privacy. Further work is needed to sharpen these results. In a sense, these
lower bounds are witnessed by pathological training sets and perturbation points
and, as such, serve as attacks in pathological (unrealistic) cases. Developing practi-
cal attacks on the privacy of an SVM’s training data remains unexplored.

Finally, it is important to note that alternate approaches to differentially-private
SVMs have been explored by others. Most notable is the work (parallel to our own)
of Chaudhuri et al. [21]. Their approach to finite-dimensional feature mappings is,
instead of adding noise to the primal solution, to add noise to the primal objective
in the form of a dot product of the weight with a random vector. Initial experiments
show their approach to be very promising empirically, although it does not allow for
non-differentiable losses like the hinge loss.

7 Concluding Remarks

In security applications like malware detection, intrusion detection, and spam filter-
ing, SVMs may be attacked through patterns that can either evade detection (eva-
sion), mislead the learning algorithm (poisoning), or gain information about their
internal parameters or training data (privacy violation). In this chapter, we demon-
strated that these attacks are feasible and constitute a relevant threat to the security
of SVMs, and to machine learning systems, in general.

Evasion. We proposed an evasion algorithm against SVMs with differentiable
kernels, and, more generally, against classifiers with differentiable discriminant
functions. We investigated the attack’s effectiveness in perfect and limited knowl-
edge settings. In both cases, our attack simulation showed that SVMs (both linear
and RBF) can be evaded with high probability after a few modifications to the attack
patterns. Our analysis also provides some general hints for tuning the classifier’s
parameters (e.g., the value of γ in SVMs with the RBF kernel) and for improving
classifier security. For instance, if a classifier tightly encloses the legitimate sam-
ples, the adversary’s samples must closely mimic legitimate samples to evade it, in
which case, if such exact mimicry is still possible, it suggests an inherent flaw in the
feature representation.

Poisoning. We presented an algorithm that allows the adversary to find an attack
pattern whose addition to the training set maximally decreases the SVM’s classi-
fication accuracy. We found that the increase in error over the course of attack is
especially striking. A single attack data point may cause the classification error to
rise from the initial error rates of 2–5% to 15–20%. This confirms that our attack
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can achieve significantly higher error rates than random label flips, and underscores
the vulnerability of the SVM to poisoning attacks. As a future investigation, it may
be of interest to analyze the effectiveness of poisoning attacks against non-convex
SVMs with bounded loss functions, both empirically and theoretically, since such
losses are designed to limit the impact of any single (attack) point on the resulting
learned function. This has been also studied from a more theoretical perspective
in [23], exploiting the framework of Robust Statistics [35, 50]. A similar effect is
obtained by using bounded kernels (e.g., the RBF kernel) or bounded feature values.

Privacy. We developed an SVM learning algorithm that preserves differential
privacy, a formal framework for quantifying the threat of a potential training set
privacy violation incurred by releasing learned classifiers. Our mechanism involves
adding Laplace-distributed noise to the SVM weight vector with a scale that de-
pends on the algorithmic stability of the SVM and the desired level of privacy.
In addition to presenting a formal guarantee that our mechanism preserves pri-
vacy, we also provided bounds on the utility of the new mechanism, which state
that the privacy-preserving classifier makes predictions that are point-wise close to
those of the non-private SVM, with high probability. Finally we discussed poten-
tial approaches for attacking SVMs’ training data privacy, and known approaches
to differentially-private SVMs with (possibly infinite-dimensional feature space)
translation-invariant kernels, and lower bounds on the fundamental limits on util-
ity for private approximations of the SVM.
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