L. Piras e Giacinto, G.,
«K-Nearest Neighbors Directed Synthetic Images Injection», in
11th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Desenzano del Garda, Italy, 2010.
(167.12 KB) L. Piras e Giacinto, G.,
«Open issues on codebook generation in Image Classification tasks», in
10th International Conference Machine Learning and Data Mining (MLDM), St. Petersburg, Russia, 2014, pagg 328-342.
(229.92 KB) L. Piras, Giacinto, G., e Paredes, R.,
«Passive-Aggressive Online Learning for Relevance Feedback in Content Based Image Retrieval», in
2nd International Conference on Pattern Recognition Applications and Methods (ICPRAM), Barcelona, Spain, 2013.
(138.32 KB) L. Piras, Giacinto, G., e Paredes, R.,
«Enhancing image retrieval by an Exploration-Exploitation approach», in
8th International Conference Machine Learning and Data Mining (MLDM), Berlin, 2012, vol 7376, pagg 355-365.
(307.57 KB) L. Piras e Giacinto, G.,
«Neighborhood-Based Feature Weighting for Relevance Feedback in Content-Based Retrieval», in
10th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), London, United Kingdom, 2009, pagg 238-241.
(181.68 KB) L. Piras, Furcas, D., e Giacinto, G.,
«User-driven Nearest-Neighbour Exploration of Image Archives», in
4th International Conference on Pattern Recognition Applications and Methods (ICPRAM), Lisbon, Portugal, 2015, pagg 181 - 189.
(376.55 KB) P. Piredda, Ariu, D., Biggio, B., Corona, I., Piras, L., Giacinto, G., e Roli, F.,
«Deepsquatting: Learning-based Typosquatting Detection at Deeper Domain Levels», in
16th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), 2017, vol 10640 of LNCS, pagg 347-358.
(1.21 MB) L. Putzu, Piras, L., e Giacinto, G.,
«Ten years of Relevance Score for Content Based Image Retrieval», in
14th International Conference Machine Learning and Data Mining (MLDM), New York, 2018, vol 10935.
L. Putzu, Loddo, A., e Di Ruberto, C.,
«Invariant Moments, Textural and Deep Features for Diagnostic MR and CT Image Retrieval», in
Computer Analysis of Images and Patterns, Cham, 2021, pagg 287–297.