Export 309 results:
Filters: Author is Roli, Fabio  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G. Giacinto, Roli, F., e Fumera, G., «Unsupervised Learning of Neural Network Ensembles for Image Classification», in IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), Como, Italy, 2000, vol III, pagg 155-159.
L. Didaci e Roli, F., «Using Co-training and Self-training in Semi-Supervised Multiple Classifier Systems», in Statistical Techniques in Pattern Recognition, Hong Kong, China, 2006.
G. L. Marcialis, Roli, F., Andronico, P., Multineddu, P., Coli, P., e Delogu, G., «Video Biometric Surveillance and Forensic Image Analysis», in First Workshop on Video Surveillance projects in Italy (VISIT 2008), Modena (Italy), 2008.
M. A. A. Dewan, Granger, E., Sabourin, R., Marcialis, G. L., e Roli, F., «Video Face Recognition From A Single Still Image Using an Adaptive Appearance Model Tracker», in IEEE Symposium Series on Computational Intelligence: IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM 2015), 2015, pagg 192-202. (533.82 KB)
P. Coli, Marcialis, G. L., e Roli, F., «Vitality detection from fingerprint images: a critical survey», in 2nd International Conference on Biometrics ICB 2007, Seoul (South Korea), 2007, vol 4642, pagg 722-731.
A. Demontis, Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-Rotaru, C., e Roli, F., «Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks», in 28th Usenix Security Symposium, Santa Clara, California, USA, 2019, vol 28th {USENIX} Security Symposium ({USENIX} Security 19), pag 321--338. (1.09 MB)
G. L. Marcialis, Didaci, L., Pisano, A., Granger, E., e Roli, F., «Why template self-update should work in biometric authentication systems?», in Information Science, Signal Processing and their Applications (ISSPA), 2012 11th International Conference on, Montreal, QC, 2012.
B. Biggio e Roli, F., «Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning», Pattern Recognition, vol 84, pagg 317-331, 2018. (3.76 MB)