Publications

Export 90 results:
Filters: Author is Battista Biggio  [Clear All Filters]
Book Chapter
G. L. Marcialis, Fumera, G., and Biggio, B., Anti-spoofing: Multimodal, in Encyclopedia of Biometrics, S. Z. Li and Jain, A. K. Springer US, 2014, pp. 1-4.
B. Biggio, Fumera, G., and Roli, F., Bayesian Linear Combination of Neural Networks, in Innovations in Neural Information Paradigms and Applications, vol. 247, M. Bianchini, Maggini, M., Scarselli, F., and Jain, L. C. Springer Berlin / Heidelberg, 2009, pp. 201-230. (435.32 KB)
B. Biggio, Fumera, G., and Roli, F., Evade Hard Multiple Classifier Systems, in Supervised and Unsupervised Ensemble Methods and Their Applications, vol. 245, O. Okun and Valentini, G. Springer Berlin / Heidelberg, 2009, pp. 15-38. (562.89 KB)
G. Fumera, Marcialis, G. L., Biggio, B., Roli, F., and Schuckers, S. C., Multimodal Anti-Spoofing in Biometric Recognition Systems, in Handbook of Biometric Anti-Spoofing, S. Marcel, Nixon, M., and Li, S. Z. Springer, 2014, pp. 165-184. (155.83 KB)
B. Biggio, Corona, I., Nelson, B., Rubinstein, B. I. P., Maiorca, D., Fumera, G., Giacinto, G., and Roli, F., Security Evaluation of Support Vector Machines in Adversarial Environments, in Support Vector Machines Applications, Y. Ma and Guo, G. Springer International Publishing, 2014, pp. 105-153. (687.1 KB)
Conference Paper
B. Kolosnjaji, Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., and Roli, F., Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables, in 2018 26th European Signal Processing Conference (EUSIPCO), Rome, 2018, pp. 533-537. (674.62 KB)
B. Biggio, Fumera, G., and Roli, F., Adversarial Pattern Classification Using Multiple Classifiers and Randomisation, in 12th Joint IAPR International Workshop on Structural and Syntactic Pattern Recognition (SSPR 2008), Orlando, Florida, USA, 2008. (395.38 KB)
B. Biggio, Corona, I., Fumera, G., Giacinto, G., and Roli, F., Bagging classifiers for fighting poisoning attacks in adversarial classification tasks, in Multiple Classifier Systems (MCS 2011), 2011, vol. 6713, pp. 350-359. (231.43 KB)
B. Biggio, Fumera, G., and Roli, F., Bayesian Analysis of Linear Combiners, in 7th Int. Workshop on Multiple Classifier Systems (MCS 2007), Prague, Czech Republic, 2007, vol. 4472, pp. 292-301. (149.24 KB)
B. Biggio, Pillai, I., Rota Bulò, S., Ariu, D., Pelillo, M., and Roli, F., Is Data Clustering in Adversarial Settings Secure?, in AISec'13: Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, Berlin, 2013, pp. 87-98. (300.52 KB)
M. Melis, Demontis, A., Biggio, B., Brown, G., Fumera, G., and Roli, F., Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid, in ICCV 2017 Workshop on Vision in Practice on Autonomous Robots (ViPAR), Venice, Italy, 2017, vol. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 751-759. (3.16 MB)
P. Piredda, Ariu, D., Biggio, B., Corona, I., Piras, L., Giacinto, G., and Roli, F., Deepsquatting: Learning-based Typosquatting Detection at Deeper Domain Levels, in 16th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), 2017, vol. 10640 of LNCS, pp. 347-358. (1.21 MB)
B. Biggio, Fumera, G., and Roli, F., Design of Robust Classifiers for Adversarial Environments, in IEEE International Conference on Systems, Man, and Cybernetics (SMC 2011), Anchorage, Alaska, USA, 2011, pp. 977–982. (328.68 KB)
F. Crecchi, Bacciu, D., and Biggio, B., Detecting Adversarial Examples through Nonlinear Dimensionality Reduction, in 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - ESANN '19, 2019, pp. 483-488. (552.39 KB)
M. Ahmadi, Biggio, B., Arzt, S., Ariu, D., and Giacinto, G., Detecting Misuse of Google Cloud Messaging in Android Badware, in 6th Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM), Vienna, Austria, 2016, pp. 103-112. (626.38 KB)
D. Maiorca, Russu, P., Corona, I., Biggio, B., and Giacinto, G., Detection of Malicious Scripting Code through Discriminant and Adversary-Aware API Analysis, in 1st Italian Conference on CyberSecurity (ITASEC), 2017, vol. 1816, pp. 96-105. (371.53 KB)
B. Biggio, Fumera, G., and Roli, F., Evade Hard Multiple Classifier Systems, in Workshop on Supervised and Unsupervised Ensemble Methods and Their Applications (SUEMA 2008), Patras, Greece, 2008. (185.01 KB)
B. Biggio, Corona, I., Maiorca, D., Nelson, B., Srndic, N., Laskov, P., Giacinto, G., and Roli, F., Evasion attacks against machine learning at test time, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2013, vol. 8190, pp. 387-402. (473.78 KB)
A. Sotgiu, Pintor, M., and Biggio, B., Explainability-Based Debugging of Machine Learning for Vulnerability Discovery, in Proc. 17th International Conference on Availability, Reliability and Security, New York, NY, USA, 2022.
M. Melis, Maiorca, D., Biggio, B., Giacinto, G., and Roli, F., Explaining Black-box Android Malware Detection, in 26th European Signal Processing Conference (EUSIPCO '18), Rome, Italy, 2018, pp. 524-528. (431.78 KB)
L. Demetrio, Biggio, B., Lagorio, G., Roli, F., and Armando, A., Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries, in 3rd Italian Conference on Cyber Security, ITASEC 2019, Pisa, Italy, 2019, vol. 2315. (801.85 KB)
M. Melis, Piras, L., Biggio, B., Giacinto, G., Fumera, G., and Roli, F., Fast Image Classification with Reduced Multiclass Support Vector Machines, in 18th Int'l Conf. on Image Analysis and Processing, Genova, Italy, 2015, vol. Image Analysis and Processing (ICIAP 2015), pp. 78-88. (829.37 KB)
M. Pintor, Roli, F., Brendel, W., and Biggio, B., Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints, in NeurIPS, 2021.
H. Xiao, Biggio, B., Brown, G., Fumera, G., Eckert, C., and Roli, F., Is Feature Selection Secure against Training Data Poisoning?, in 32nd Int'l Conf. on Machine Learning (ICML) - JMLR W&CP, 2015, vol. 32, pp. 1689-1698. (1.54 MB)
A. Emanuele Cinà, Vascon, S., Demontis, A., Biggio, B., Roli, F., and Pelillo, M., The Hammer and the Nut: Is Bilevel Optimization Really Needed to Poison Linear Classifiers?, in International Joint Conference on Neural Networks, (IJCNN) 2021, Shenzhen, China, 2021, pp. 1–8.

Pages