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Abstract

When a multi-label classifier outputs a real-valued
score for each class, a well known design strategy con-
sists of tuning the corresponding decision thresholds by
optimising the performance measure of interest on val-
idation data. In this paper we focus on the F -measure,
which is widely used in multi-label problems. We de-
rive two properties of the micro-averaged F measure,
viewed as a function of the threshold values, which al-
low its global maximum to be found by an optimisa-
tion strategy with an upper bound on computational
complexity of O(n2N2), where N and n are respec-
tively the number of classes and of validation samples.
So far, only a suboptimal threshold selection rule and
a greedy algorithm without any optimality guarantee
were known for this task. We then devise a possible opti-
misation algorithm based on our strategy, and evaluate
it on three benchmark, multi-label data sets.

1 Introduction

In a multi-label classification problem, a sample can
belong to more than one class. Such kind of prob-
lem occurs in several applications, like text categorisa-
tion, image annotation, protein function classification
and music classification, and is receiving an increasing
interest in the pattern recognition and machine learn-
ing literature [4, 5, 2, 6]. Let us denote the number
of classes with N , and a sample with (x,y), where
x ∈ X is a feature vector in a given feature space
X , and y ∈ Y = {+1,−1}N encodes the set of its
class labels, where yk = +1(−1) means that the sam-
ple (does not) belong to the k-th class. Accordingly,
a multi-label classifier implements a decision function
f : X → Y . Performance measures for multi-label
problems are based on precision and recall. A widely
used one is the F measure, which combines precision
and recall into a scalar.

In this paper we address an open problem related

to the micro-averaged F measure, in the case when a
multi-label classifier which outputs a real-valued score
sk(x) for each class is used, and the decision func-
tion is obtained by setting a possibily differerent thresh-
old tk for each class, such that fk(x) = +1(−1), if
sk(x) ≥ tk(< tk). In this case, a widely used design
strategy is to tune the N threshold values after classifier
training, by optimising the chosen performance mea-
sure on validation data [7, 1]. So far, no optimisation
algorithm that guarantees to find the global maximum
of the micro-averaged F measure was known, except
for the computationally prohibitive exahustive search.
Only a suboptimal threshold selection strategy [7], and
a greedy search algorithm [1] were proposed so far.

Our contribution consists of deriving two properties
of the micro-averaged F measure as a function of the
N thresholds, computed on a given set of n samples,
which guarantee that its global maximum can be found
by an optimisation strategy based on changing a sin-
gle threshold value at a time, with an upper bound on
computational complexity ofO(n2N2). We also devise
a possible implementation of this strategy, and exper-
imentally evaluate it on three benchmark, multi-label
data sets, related to different application domains.

In Sect. 2 we describe the F measure, and review
related works. The two properties and the resulting op-
timisation strategy are presented in Sect. 3. The experi-
mental evaluation is reported in section 4.

2 Background and Previous Works

In information retrieval, precision and recall are de-
fined respectively as the probability that a retrieved
sample is relevant to a given query, and the probability
to retrieve a relevant sample. In a multi-label classifica-
tion problem, each class is viewed as the set of samples
that are relevant to a distinct query. Precision and recall
for the k-th class can thus be estimated from a multi-
label data set, respectively as:

pk =
TPk

TPk + FPk
, rk =

TPk
TPk + FNk

, (1)



where TPk (true positive) is the number of samples that
are correctly labelled as belonging to the k-th class,
while FPk (false positive) and FNk (false negative)
are defined analogously. The F measure is often used
to obtain a scalar combination of precision and recall,
weighted by a parameter β ∈ [0,+∞):

Fβ,k =
1 + β2

β2/rk + 1/pk
. (2)

The overall performance on the N categories can
be computed either by macro- or micro-averaging the
class-related values, depending on application require-
ments [4]. We focus here on the micro-averaged F mea-
sure, denoted as Fm

β , which is defined as [7]:

Fm
β =

(1 + β2)

(1 + β2) +
∑N

k=1(FPk+β2FNk)∑N
k=1 TPk

. (3)

Consider now a trained classifier which outputs real-
valued scores sk(x), and a decision function imple-
mented using threshold values tk, k = 1, . . . , N , as
described in Sect. 1. The corresponding Fm

β com-
puted on a given data set of n samples {(xi,yi)}ni=1

(e.g., a validation set) is a piece-wise constant func-
tion of t1, . . . , tN , which can exhibit discontinuities for
tk = sk(xi), k = 1, . . . , N , i = 1, . . . , n. It can
thus take up to (n + 1)N distinct values. Contrary to
its macro-averaged version, Fm

β can not be decomposed
into independent functions of individual thresholds [7].
Therefore, no straightforward optimisation strategy ex-
ists to find the threshold values that provide its global
maximum, except for the computationally prohibitive
exhaustive search.

This issue has been addressed so far only in [1, 7].
In [7] a very simple solution was proposed, consisting
of using the threshold values that maximise the macro-
averaged F measure, which can be computed at very
low computational cost. However, the resulting value
of Fm

β can be significantly lower than the one attainable
by tuning the thresholds on the same Fm

β [1]. To this
aim, a greedy search algorithm was proposed in [1]. It
iteratively finds the local maximum of Fm

β with respect
to a single threshold at a time, until the attained im-
provement falls below a predefined amount. However,
no guarantee was provided that this algorithm can attain
the global maximum of Fm

β .
In [7] the issue of overfitting was also addressed.

It was argued that the risk of overfitting is higher for
rarer classes, and that too low threshold values should
hurt Fm

β to a higher extent than too high values. Based
on this argument, two heuristics (named “FBR”) were
proposed to limit overfitting. They consist of setting
the threshold of a rare class either to +∞ (FBR.0),

or to the score of the top-ranked sample in that class
(FBR.1). Rare classes were defined as the ones for
which Fβ,k < fbr, where fbr is a predefined value.

3 Fm
β Optimisation Strategy

In this section we present the main contribution of
this work. We first state two properties of Fm

β as a func-
tion of t1, . . . , tN , evaluated on a given set of n samples,
and exploit them to devise an optimisation strategy that
guarantees to attain the global maximum of Fm

β at low
computational compexity. We then provide a possible
implementation of this strategy, and derive its compu-
tational complexity. We finally discuss the relationship
with the optimisation strategy of [1]. Due to lack of
space, the proofs are not reported in this paper, and are
available at the authors’ web site.1

Property 1. Consider any given set of threshold values
t1, . . . , tN . If, for each k = 1, . . . , N ,
Fm
β (t1, . . . , tN ) =

maxτ F
m
β (t1, .., tk−1, τ, tk+1, .., tN ),

then t1, . . . , tN provides the global maximum of Fm
β .

This implies that, if a given set of threshold values
does not provide the global maximum of Fm

β , then Fm
β

can be improved by changing the value of at least one
of them, while keeping the other N − 1 ones fixed.

The second property states that, after any threshold
tk has been updated once, no further improvement of
Fm
β can be attained in any subsequent step, by values of
tk lower than the current one:

Property 2. Consider any set of threshold values
t1, . . . , tN , such that, for a given k:
tk = arg maxτ F

m
β (t1, . . . , tk−1, τ, tk+1, . . . , tN ).

Consider now another set of threshold values
t′1, . . . , t

′
k−1, tk, t

′
k+1, . . . , t

′
N , such that:

Fm
β (t′1, . . . , t

′
k−1, tk, t

′
k+1, . . . , t

′
N ) >

Fm
β (t1, . . . , tk−1, tk, tk+1, . . . , tN ).

For any τ < tk the following inequality is always true:
Fm
β (t′1, . . . , t

′
k−1, τ, t

′
k+1, . . . , t

′
N ) <

Fm
β (t′1, . . . , t

′
k−1, tk, t

′
k+1, . . . , t

′
N ).

It is easy to see that properties 3 and 4 guarantee that
the global maximum of Fm

β can be found as follows.
First, set the thresholds to their smallest possible value,
i.e., any value tk < mini sk(xi). Then, repeatedly scan
them, and update each of them to any value which pro-
vides an improvement of Fm

β (if any), keeping the other
ones at their current values, until no Fm

β improvement
is attained after a scan over all thresholds. A possible

1http://prag.diee.unica.it/pra/bib/pillai_
icpr2012_thr
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Algorithm 1 Fm
β optimisation algorithm

Require: the score values on a validation set V
Ensure: the values of t1, . . . , tN that maximise Fm

β on V
set tk to any value lower than mini sk(xi), k = 1, . . . , N
repeat
updated← False
for k = 1, . . . , N do
θ ← argmax

τ≥tk
Fm
β (t1, . . . , tk−1, τ, tk+1, . . . , tN )

if θ 6= tk then
tk ← θ, updated← True

end if
end for

until updated = False
return t1, . . . , tN

implementation of this optimisation strategy is given by
Algorithm 1: at each scan (corresponding to the repeat-
until loop), each threshold is updated to the value which
locally maximises Fm

β . Note that this requires to evalu-
ate up to n+ 1 values for each tk (see Sect. 2).

In the same online appendix mentioned above, we
prove that the computational complexity of Algorithm
1 is upper bounded by 1

2

[
N2(n+ 1)2 +N(n+ 1)

]
=

O(n2N2), in terms of the number of different sets of
threshold values (t1, . . . , tN ) which are evaluated.

The greedy algorithm of [1] turns out to be an-
other possible implementation of our optimisation strat-
egy, exploiting only Property 3. It can thus provide
the global maximum of Fm

β , provided that no early-
stopping criterion as the one considered in [1] is used.

4 Experimental Evaluation

We experimentally evaluated the computational cost
and the tendency to overfit of Algorithm 1. The latter is
an obvious concern, since Algorithm 1 finds the global
maximum of Fm

β without any countermeasure against
overfitting, except for the use of validation data instead
of training data. We did not make any comparative per-
formance evaluation, since no alternative optimisation
algorithm exists. Indeed, we have shown that also the
algorithm of [1] attains the global maximum of Fm

β , if
no early-stopping is used, while the threshold selection
strategy of [7] was already found to be less effective
than directly optimising Fm

β [1].
We used three benchmark multi-label data sets: the

“ModApte” version of “Reuters 21578” (text cate-
gorization); Yeast (gene function classification), and
Scene (image annotation). For Reuters we used the bag-
of-words representation, with tf-idf features. Let D de-
notes the number of training documents, tf(τk, d) the
frequency of term τk in any document d, and Dk the

Reuters Yeast Scene
N. of training samples 7769 1500 1211
N. of testing samples 3019 917 1196
Feature set size 15000 104 295
N. of classes 90 14 6

Class frequency
Min. 1.3E-4 0.065 0.136
Max. 0.370 0.752 0.229

Table 1. Characteristics of the data sets.

number of training documents in which τk occurs. The
corresponding tf-idf feature value for τk in document d
is defined as tf(τk, d) × log(D/Dk). After stemming
and stop-word removal, a further feature selection was
carried out using the information gain criterion. The
main characteristics of the data sets, after the above pre-
processing steps for Reuters, are reported in Table 1.

The well known binary relevance (BR) approach
was used to implement multi-label classifiers. It con-
sists of independently training N binary classifiers us-
ing the one-vs-all strategy [4, 6]. We used as base classi-
fiers the k-nearest neighbours (k-NN), and support vec-
tor machines (SVM) with linear kernel for Reuters, and
radial-basis function kernel for Scene and Yeast.

Ten runs of the experiments were carried out: the
original training set was partitioned into ten disjoint
subsets of identical size, and at each run only eight sub-
sets were used for classifier training. Threshold val-
ues were computed through a five-fold cross-validation,
carried out on the training samples of each run: Algo-
rithm 1 was applied to the union of the scores of the five
validation folds. We considered only β = 1 as in [1, 7].
The average Fm

1 value over the ten runs was computed
on the original testing set.

In Table 2 we report the attained Fm
β values, under

different experimental settings. First, to assess whether
and to what extent overfitting occurs, we compared the
testing set Fm

1 value (“Test set” column) with the value
attained on the same cross-validation samples where the
thresholds were computed (“Validation set”). It can
be seen that the latter values are higher, which means
that overfitting occurred, although its extent was rather
small. In particular, in the Reuters data set, where
N = 90 thresholds had to be computed, and several
classes were very rare (see Table 1), the difference was
less than 0.03 for both classifiers.

We then evaluated whether the FBR heuristic of [7]
was able to reduce overfitting. To this aim, we estimated
the value of the fbr parameter (see Sect. 2) through an
inner five-fold cross validation carried out on each train-
ing fold of the outer cross-validation used for comput-
ing the decision thresholds, similarly to [1]. The corre-
sponding results on testing samples are reported in the



Data set Classifier Validation set Test set Test set (1st loop) FBR.0 FBR.1

Reuters
SVM 0.907±0.001 0.880±0.002 0.689±0.010 0.879±0.002 0.878±0.002
k-NN 0.854±0.002 0.825±0.003 0.580±0.013 0.825±0.003 0.825±0.003

Yeast
SVM 0.682±0.002 0.678±0.003 0.669±0.003 0.678±0.003 0.678±0.003
k-NN 0.667±0.003 0.661±0.003 0.651±0.004 0.661±0.003 0.660±0.002

Scene
SVM 0.778±0.007 0.769±0.006 0.757±0.006 0.769±0.006 0.769±0.006
k-NN 0.739±0.007 0.711±0.004 0.706±0.006 0.711±0.004 0.711±0.004

Table 2. Average Fm
1 values, and standard deviation, over the ten runs of the experiments.

“FBR.0” and “FBR.1” columns of Table 2. They show
that there is no appreciable difference with respect to
the results attained without using FBR. This is in agree-
ment with the results of [1], where FBR was found to
be effective only for the marco-averaged F measure. A
possible reason is that Fm

β is mainly affected by FP er-
rors on rare classes (see Eq. 9), whose amount is usu-
ally much higher than FNs and TPs. Accordingly, to
maximise Fm

β it is crucial to reduce FPs errors on rare
classes. This is attained by increasing the corresponding
thresholds as much as possible. Note now that the opti-
mal values of such thresholds can be reliably estimated
by an optimisation algorithm from validation data, due
to the relatively large number of FP samples in multi-
label problems, especially in rare classes. Increasing
the thresholds of rare classes is also what FBR tries to
do afterwards, which can explain its ineffectiveness.

A very low computational cost was observed in our
experiments. The number of different sets of threshold
values (t1, . . . , tN ) that were evaluated by Algorithm 1
was always smaller than 2(n + 1)N , which is much
lower than the upper bound reported in Sect. 3, and of
the cost of an exhaustive search, given by (n + 1)N .
This also provides evidence that Algorithm 1 can scale
very well on large data sets with many classes.

Consider finally that in [1] no significant improve-
ment of Fm

1 was found, after the first scan of the N
thresholds. Accordingly, a single scan was suggested,
which corresponds to a single repeat-until loop of Al-
gorithm 1. We found instead that more than one repeat-
until loop may be required. This was the case of the
Reuters data set, for which the testing set Fm

1 values at-
tained after the first loop, reported in the “Test set (1st
loop)” column of Table 2, turned out to be significantly
lower than the final ones (“Test” column).

5 Conclusions

We developed an optimisation strategy for the micro-
averaged F measure, that allows its global maximum to
be found on a given data set, as a function of the class-
related decision thresholds, with a low computational
cost. Empirical evidence showed that, using validation

data, a limited overfitting is incurred, even in problems
with many classes, including rare ones.

Our results could also be exploited to evaluate the
macro- and micro-averaged precision-recall curves as a
function of t1, . . . , tk, which is another open issue. In
[7] a strategy based on maximising the corresponding F
measure for different β values was suggested, but it was
not analysed, and no implementation was proposed.

The design strategy we considered consists of train-
ing any multi-label classifier using its own objective
function, not necessarily related to the F measure (e.g.,
a standard SVM classifier), and then optimising the F
measure by tuning the decision thresholds. It will be
interesting to compare its performance with the one of
classifiers whose objective function was designed to
approximate the F measure of a single class (e.g., [3]).
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A Auxiliary equivalences.

We report here three equivalences that will be used in the proofs of the next sections.

Equivalence 4.

Given four real values A, B, ∆A and ∆B, with B > 0, ∆B < 0, and B + ∆B > 0, the following equivalence
holds:

A+ ∆A

B + ∆B
<
A

B
⇔ A

B
<

∆A

∆B
. (4)

Proof. Taking into account the constraints on B,∆B and B + ∆B, from the first inequality of (4) one obtains:

B(A+ ∆A) < A(B + ∆B),

AB + ∆A×B < AB +A×∆B,

∆A×B < A×∆B,

A

B
<

∆A

∆B
.

Equivalences 5 and 6.

Given four real values A, B, ∆A and ∆B, with B > 0, ∆B > 0, the following equivalences hold:

∆A

∆B
<
A+ ∆A

B + ∆B
⇔ A+ ∆A

B + ∆B
<
A

B
, (5)

∆A

∆B
<
A

B
⇔ ∆A

∆B
<
A+ ∆A

B + ∆B
<
A

B
. (6)

Proof. We indirectly prove (5) and (6) by showing that the following equivalences (7) hold, under the same
constraints given above. This implies that equivalences (5) and (6) hold, as they are implied by (7). Note indeed that
the two inequalities of (5) coincide with the first and third inequality of (7), while the ones of (6) coincide with the
second inequality of (7), and with the union of the first and third inequality of (7).

∆A

∆B
<
A+ ∆A

B + ∆B
⇔ ∆A

∆B
<
A

B
⇔ A+ ∆A

B + ∆B
<
A

B
. (7)

Taking into account the constraints on B and ∆B, from the second inequality of (7) one obtains:

∆A×B < A×∆B. (8)

Adding (∆A×∆B) to both sides of (8), one obtains:

∆A×B + ∆A×∆B < ∆A×∆B +A×∆B,

∆A(B + ∆B) < (A+ ∆A)∆B,

which corresponds to the first inequality of (7).
Adding (A×B) to both sides of (8), one obtains instead:

∆A×B +A×B < A×B +A×∆B,

B(A+ ∆A) < A(B + ∆B),

which corresponds to the last inequality of (7).



B Proof of Property 3

Property 3. Consider any given set of threshold values t1, . . . , tN . If, for each k = 1, . . . , N ,

Fm
β (t1, . . . , tN ) = max

τ
Fm
β (t1, . . . , tk−1, τ, tk+1, . . . , tN ) ,

then t1, . . . , tN provides the global maximum of Fm
β .

We remind the reader that the Fm
β measure is defined as:

Fm
β =

(1 + β2)

(1 + β2) +
∑N

k=1(FPk+β2FNk)∑N
k=1 TPk

. (9)

Proof. Consider a set of threshold values T = (t1, . . . , tN ), and another set obtained from T by changing the
values of m thresholds, with m ≤ N . Without losing generality, we assume that the first m thresholds are changed.
We denote the latter set as T (1,...,m) = (t′1, . . . , t

′
m−1, t

′
m, tm+1, . . . , tN ). Let us also denote with T (k) the threshold

values obtained from T by changing only the k threshold from tk to t′k, k ∈ {1, . . . ,m}. In the following we prove
that, for any given m ∈ {2, . . . , N} and any given T (1,...,m), the following implication holds:

if F̂m
β (T ) > F̂m

β (T (k)) for each k ∈ {1, . . . ,m},
then F̂m

β (T ) > F̂m
β (T (1,...,m)).

(10)

Clearly, this implies that Property 3 is true.
Consider first Eq. (9). To simplify the notation, let us denote the values

∑N
k=1(FPk + β2FNk) and

∑N
k=1 TPk,

corresponding to the thresholds T , respectively as E and TP . We also denote as E + ∆Ek and TP + ∆TPk the
corresponding values attained by T (k) (we remind the reader that FPk, FNk and TPk depend only on the value of
the k-th threshold). Obviously, ∆Ek = ∆TPk = 0, for any k > m.

From Eq. (9) it is easy to see that the inequality F̂m
β (T ) > F̂m

β (T (k)) is equivalent to E
TP < E+∆Ek

TP+∆TPk
, and that

inequality F̂m
β (T ) > F̂m

β (T (1,...,m)) is equivalent to E
TP <

E+
∑m

k=1 ∆Ek

TP+
∑m

k=1 ∆TPk
. Accordingly, implication (10) can be

rewritten as:

if
E

TP
<

E + ∆Ek
TP + ∆TPk

, for each k ∈ {1, . . . ,m},

then
E

TP
<

E +
∑m
k=1 ∆Ek

TP +
∑m
k=1 ∆TPk

.
(11)

If m = 1, (11) is trivially true. If m > 1, we prove it by induction. First, we prove that it holds when m = 2. Then
we prove that, if (11) holds for any m = m∗ ∈ {2, . . . , N − 1}, then it holds also for m = m∗ + 1.

Base case: m = 2

Assume that the consequent part of (11) is false, namely, a point T (1,2) = (t′1, t
′
2, t3, . . . , tN ) exists, such that

Fm
β (T ) < Fm

β (T (1,2)). Using the above notation, this inequality can be rewritten as:

E

TP
>

E + ∆E1 + ∆E2

TP + ∆TP1 + ∆TP2
.

Taking into account also the assumptions of (11) we obtain:

E + ∆E1 + ∆E2

TP + ∆TP1 + ∆TP2
<

E

TP
<

E + ∆Ek
TP + ∆TPk

, k = 1, 2. (12)

Let us now consider two different cases: ∆TP2 < 0, and ∆TP2 > 0 (the case ∆TP2 = 0 is trivial), with no
constraint on ∆TP1. (Note that the proof can be made also by considering the cases ∆TP1 < 0 and ∆TP1 > 0, with
no constraint on ∆TP2.)



If ∆TP2 < 0, applying (4) to the first and third term of (12),2 we obtain:

E + ∆E1

TP + ∆TP1
<

∆E2

∆TP2
.

From the above expression and the second inequality of (12), we obtain:

E

TP
<

∆E2

∆TP2
.

Finally, applying (4) to the above inequality,3 we obtain:

E + ∆E2

TP + ∆TP2
<

E

TP
,

which contradicts the second inequality of (12) for k = 2.
The proof for the case ∆TP2 > 0 is similar. It can be obtained by applying (5) to the first and third term of

Eq. (12),4 then using the first of the inequalities (12), and finally applying (6),5 which leads to a contradiction.

Inductive step

Assuming that (11) holds for each m ≤ m∗ < N , we have to prove that it holds also for m = m∗ + 1, namely, that
the following implication holds:

if
E

TP
<

E + ∆Ek
TP + ∆TPk

, for each k ∈ {1, . . . ,m∗ + 1},

then
E

TP
<

E +
∑m∗+1
k=1 ∆Ek

TP +
∑m∗+1
k=1 ∆TPk

.
(13)

By the above assumption, we know that:

E

TP
<

E +
∑m∗

k=1 ∆Ek

TP +
∑m∗

k=1 ∆TPk
. (14)

Note now that the consequent of (13) can be rewritten as:

E

TP
<

E +
∑m∗

k=1 ∆Ek + ∆Em∗+1

TP +
∑m∗

k=1 ∆TPk + ∆TPm∗+1

. (15)

It is now easy to see that (15) is implied by (14) and by the antecedent of (13) for k = m∗ + 1, which in turn implies
that (13) is true. The proof coincides indeed with the one of the basis case above, with a simple change of notation.
This completes the proof of Property 3.

C Proof of Property 4

Property 4. Consider any set of threshold values t1, . . . , tN , such that, for a given k:

tk = arg max
τ

Fm
β (t1, . . . , tk−1, τ, tk+1, . . . , tN ) .

Consider now another set of threshold values t′1, . . . , t
′
k−1, tk, t

′
k+1, . . . , t

′
N , such that:

Fm
β (t′1, . . . , t

′
k−1, tk, t

′
k+1, . . . , t

′
N ) > Fm

β (t1, . . . , tk−1, tk, tk+1, . . . , tN ) .

For any τ < tk the following inequality is always true:

Fm
β (t′1, . . . , t

′
k−1, τ, t

′
k+1, . . . , t

′
N ) < Fm

β (t′1, . . . , t
′
k−1, tk, t

′
k+1, . . . , t

′
N ) .

2 with A = E + ∆E1, B = TP + ∆TP1, ∆A = ∆E2 and ∆B = ∆TP2 < 0
3with A = E, B = TP , ∆A = ∆E2, ∆B = ∆TP2 < 0
4 with A = E + ∆E1, B = TP + ∆TP1, ∆A = ∆E2 and ∆B = ∆TP2 > 0
5 with A = E, B = TP , ∆A = ∆E2, ∆B = ∆TP2 > 0



Proof. The first assumption of Property 4 considers a given set of threshold values, such that no higher value of F̂m
β

can be attained by changing the k-th threshold, for some given k. Using the same notation of B, this can be rewritten
as:

∀(∆Ek,∆TPk),
E

TP
<

E + ∆Ek
TP + ∆TPk

, (16)

where E and TP correspond to the considered set of threshold values, while ∆Ek and ∆TPk are any change respec-
tively of E and TP attainable by changing the k-th threshold.

The second assumption states that a higher value of F̂m
β is attained by changing any subset of the threshold values

but the k-th one. Using the previous notation, this can be rewritten as:

∃(∆Ei,∆TPi), i ∈ {1, . . . , N} − {k},
E

TP
>

E +
∑
i 6=k ∆Ei

TP +
∑
i6=k ∆TPi

. (17)

Under the above assumptions, Property 4 states that no higher values of F̂m
β can be attained from the latter set of

threshold values, by decreasing the value of the k-th threshold, namely:

∀(∆E′k,∆TP ′k),
E +

∑
i 6=k ∆Ei

TP +
∑
i6=k ∆TPi

<
E +

∑
i 6=k ∆Ei + ∆E′k

TP +
∑
i 6=k ∆TPi + ∆TP ′k

, (18)

where ∆E′k and ∆TP ′k denote any change of E and TP obtained by decreasing the value of the k-th threshold.
Since ∆Ek and ∆TPk correspond to any change of the k-th threshold, we can consider the particular change that

leads to ∆Ek = ∆E′k and ∆TPk = ∆TP ′k. Decreasing the value of the k-th threshold implies that ∆TP ′k ≥ 0. If
we consider a value of Tk such that ∆TP ′k = 0, then ∆E′ must be negative, and Property 4 is trivially true. We will
consider therefore only the case ∆TP ′k > 0 in the following.

Inequality (16) implies thus the following one:

E

TP
<

E + ∆E′k
TP + ∆TP ′k

.

Applying (5) to this inequality,6 we obtain:

E + ∆E′k
TP + ∆TP ′k

<
∆E′k

∆TP ′k
(19)

Combining inequalities (16), (17) and (19), we obtain:

E +
∑
i6=k ∆Ei

TP +
∑
i 6=k ∆TPi

<
∆E′k

∆TP ′k
.

Applying (6),7 we finally obtain (18), which completes the proof.

D Computational complexity of Algorithm 1

Let us denote with T (0) and T (n) respectively the interval
(
−∞, sk(x(1))

)
and

[
sk(x(n)),+∞

)
, and with T (i) the

intervals
[
sk(x(i)), sk(x(i+1))

)
, i = 1, . . . , n− 1.

An upper bound for the number of threshold values evaluated by Algorithm 1 can be obtained by considering the
following conditions:

1. For each class k, the scores sk(xi), i = 1, . . . , n, are all different.

2. In each repeat-until loop, only one threshold is updated.

3. When any threshold tk is updated, if its current value is in T (i)
k , i < n, then the new value is in T (i+1)

k .

6with A = E, B = TP , ∆A = ∆E′k and ∆B = ∆TP ′k (we remind the reader that ∆TP ′k > 0).
7 with A = E +

∑
i 6=k ∆Ei, B = TP +

∑
i6=k ∆TPi, ∆E′k and ∆B = ∆TP ′k



4. The global maximum of F̂m
β is attained when tk ∈ T (n)

k , k = 1, . . . , N .

This implies that the repeat-until loop is executed for Nn times, and that in each loop one threshold value less than
in the previous loop has to be evaluated. The number of threshold values that are evaluated is thus: Nn in the first
loop, Nn− 1 in the second loop, Nn− 2 in the third loop, ..., 1 in the last loop, which amounts to:

Nn∑
j=1

j =
1

2

[
N2n2 +Nn

]
= O(n2N2) .
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