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Abstract—Machine learning has already been exploited as a
useful tool for detecting malicious executable files. Data retrieved
from malware samples, such as header fields, instruction se-
quences, or even raw bytes, is leveraged to learn models that
discriminate between benign and malicious software. However,
it has also been shown that machine learning and deep neural
networks can be fooled by evasion attacks (also known as
adversarial examples), i.e., small changes to the input data that
cause misclassification at test time. In this work, we investigate
the vulnerability of malware detection methods that use deep
networks to learn from raw bytes. We propose a gradient-
based attack that is capable of evading a recently-proposed deep
network suited to this purpose by only changing few specific bytes
at the end of each malware sample, while preserving its intrusive
functionality. Promising results show that our adversarial mal-
ware binaries evade the targeted network with high probability,
even though less than 1% of their bytes are modified.

I. INTRODUCTION

Detection of malicious binaries still constitutes one of the
major quests in computer security [22]. To counter their grow-
ing number, sophistication and variability, machine learning-
based solutions are becoming increasingly adopted also by
anti-malware companies [13]. Although past research work on
binary malware detection has explored the use of traditional
learning algorithms on n-gram-based, system-call-based, or
behavior-based features [1], [19], [21], [26], more recent work
has considered the possibility of using deep-learning algo-
rithms on raw bytes as an effective way to improve accuracy
on a wide range of samples [18]. The rationale is that such
algorithms should automatically learn the relationships among
the various sections of the executable file, thus extracting a
number of features that correctly represent the role of specific
byte groups in specific sections (e.g., if a byte belongs to the
code section or simply to a section pointer).

While machine learning can be used to map the features
from malware analysis to a decision on classifying programs
as benign or malicious, this process is also vulnerable to
adversaries that may manipulate the programs in order to
bypass detection. It has been shown that deep-learning meth-
ods and neural networks are particularly vulnerable to these
evasion attacks, also known as adversarial examples, i.e.,
input samples specifically manipulated to be misclassified [3],
[23]. While the existence of adversarial examples has been

widely demonstrated on computer-vision tasks (see, e.g., [5]),
it is common to consider that it is not trivial to practically
implement the same attack on executable files [2], [18], [25],
as one mistake at changing the code section or the headers
may completely compromise the file functionality.

In this work, we show that it is instead possible to evade
deep-learning systems for malware detection by performing
few changes to malware binaries without compromising their
functionality. In particular, we introduce a gradient-based
attack to generate adversarial malware binaries, i.e., evasive
variants of malware binaries. The underlying idea of our attack
is to manipulate some bytes in each malware to maximally
increase the probability that the input sample is classified as
benign. Although our attack can ideally manipulate every byte
in the file, in this work we only consider the manipulation of
padding bytes appended at the end of the file, to guarantee that
the intrusive functionality of the malware binary is preserved.
We nevertheless discuss throughout the paper which other
bytes and sections of the file can be modified while still
preserving its functionality. Our attack is conceived against
MalConv, i.e., a deep neural network trained on raw bytes
for malware binary detection, recently proposed by Raff et
al. [18]. To our knowledge, this is among the first attacks
proposed at the byte-level scale, similarly to [14], as most
work in adversarial machine learning for malware detection
has considered injection and removal of API calls or similar
characteristics [3], [6], [9], [11], [12], [16], [24], [27], [28].

We perform our experiments on 13,195 Windows Portable
Executable (PE) samples, showing that the accuracy of Mal-
Conv is decreased by over 50% after injecting only 10, 000
padding bytes in each malware sample, i.e., less than 1% of the
bytes passed as input to the deep network. We also show that
our attack outperforms random byte injections, and explain
why being capable of manipulating even fewer bytes within
the file content (rather than appending them at the end) may
drastically increase the success of the attack.

With this paper, we aim to claim that it may be very difficult
to deploy a robust detection methodology that blindly analyzes
the executable bytes. Learning algorithms can not automati-
cally learn the hard-to-manipulate, invariant information that
reliably characterizes malware, if not proactively designed to
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Fig. 1: Architecture of the MalConv deep network for malware binary detection [18].

keep that into account [4], either by providing proper training
examples or encoding a-priori knowledge of which bytes can
be maliciously manipulated. Robustness against adversarial
attacks provided by well-motivated miscreants is thus a crucial
design characteristic. This work provides preliminary evidence
of this issue, which we aim to further investigate in the future.

II. PORTABLE EXECUTABLE (PE) FORMAT

We provide here a brief description of the structure of
PE files, and the prominent approaches that can be used to
practically change their bytes.

A. PE File Basics

PE files are executables that are characterized by an or-
ganized structure, which will be briefly described in the
following (more details can be found in [17]).

Header. A data structure that contains basic information on
the executable, such as the number and size of its sections, the
operating system type, and the role performed by the file itself
(e.g., a dynamically-linked library). Such header is organized
in three sub-sections: (i) a DOS header, as the first bytes of
a PE executable essentially represent a DOS program; (ii)
the true PE header; (iii) an optional header which contains
information such as the entry point of the file (e.g., the address
of the first loaded instruction), the size of the code sections,
the magic number, etc.

Section Table. A table that describes the characteristics of
each file section, with a special focus on a virtual address range
that represents how that section will be mapped in memory
once the process is loaded. It also contain clear references to
where the data generated by the compiler/assembler are stored
for each section.

Data. The actual data related to each section. The most
important ones are .text (which contains code instruc-
tions), .data (which contains the initialized global and static
variables), .rdata (which contains constants and additional
directories such as debug), and .idata (which contains
information about the used imports in the file).

B. Manipulating PE Files

Manipulating PE files with the goal of preserving their
functionality is in general a non-trivial task, as it can be quite
easy to compromise them by even changing one byte. As
reported by Anderson et al. [2], possible and simple solutions

to perform manipulations include either injecting bytes in part
of the files that are not used (e.g., adding new sections that
are never reached by the code), or directly appending them
at the end of the file. Of course, these strategies are prone to
detection by simply inspecting the file header or the section
table (in the simplest case of byte appending), or by checking
if such sections are accessed by the code itself (in case of
more complex injections).

There are some special cases in which it is possible to
directly perform changes to the executable without com-
promising its functionality. A popular example is changing
bytes related to debug information, which are simply used
as reference by code developers. Packing (i.e., compressing
part of the executable that is then decompressed at runtime) is
another possibility, which is however not adequate to perform
fine-grained modifications to the file.

More complex changes require precise knowledge of the
architecture of the file, and may be not always feasible. For
instance, changing the .text section may entirely break
the program. However, more trivial changes can be quite
dangerous for the file integrity; for example, adding bytes to an
existing section would require changing the header and section
table accordingly. For the sake of simplicity, in this paper we
only refer to byte appending as modification strategy.

III. DEEP LEARNING FOR MALWARE BINARY DETECTION

The deep neural network attacked in this paper is the
MalConv network proposed by Raff et al. [18], depicted
in Fig. 1. Let us denote with X = {0, . . . , 255} the set
of possible integer values corresponding to a byte. Then,
the aforementioned network works as follows. The k bytes
(x1, . . . , xk) ∈ X k extracted from the input file are padded
with zeros to form an input vector x of d elements (if
k < d, otherwise the first d bytes are only considered without
padding). This ensures that the input vector provided to the
network has a fixed dimensionality regardless of the length of
the input file. Each byte xj is then embedded as a vector
zj = φ(xj) of 8 elements (through a fixed mapping φ
learned by the network during training). This amounts to
encoding x as a matrix Z ∈ Rd×8. This matrix is then fed to
two convolutional layers, respectively using Rectified Linear
Unit (ReLU) and sigmoidal activation functions, which are
subsequently combined through gating [8]. This mechanism
multiplies element-wise the matrices outputted by the two
layers, to avoid the vanishing gradient problem caused by
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Fig. 2: Representation of an exemplary two-dimensional byte
embedding space, showing the distance di and the projection
length si of each byte mi with respect to the line gj(η). In
this case, the padding byte zj will be modified by the attack
algorithm to mv , as dv = mini:si>0 di, i.e., mv is the closest
byte with a projection on gj(η) aligned with nj .

sigmoidal activation functions. The obtained values are then
fed to a temporal max pooling layer which performs a 1-
dimensional max pooling, followed by a fully-connected layer
with ReLU activations. To avoid overfitting, Raff et al. [18] use
DeCov regularization [7], which encourages a non-redundant
data representation by minimizing the cross-covariance of the
fully-connected layer outputs. The deep network eventually
outputs the probability of x being malware, denoted in the
following with f(x). If f(x) ≥ 0.5, the input file is thus
classified as malware (and as benign, otherwise).

IV. ADVERSARIAL MALWARE BINARIES

We discuss here how to manipulate a source malware binary
x0 into an adversarial malware binary x by appending a
set of carefully-selected bytes after the end of file. As in
previous work on evasion of machine-learning algorithms [3],
our attack aims to minimize the confidence associated to
the malicious class (i.e., it maximizes the probability of the
adversarial malware sample being classified as benign), under
the constraint that qmax bytes can be injected. Note that, to
append qmax bytes to x0, we have to ensure that k+qmax ≤ d,
where k is the size of x0 (i.e., the number of informative bytes
it contains) without considering the padding zeros. This means
that the maximum number of bytes that can be injected by the
attack is q = min(k+qmax, d)−k.1 This can be characterized
as the following constrained optimization problem:

min
x

f(x) , (1)

s.t. d(x,x0) ≤ q , (2)

where the distance function d(x,x0) counts the number of
padding bytes in x0 that are modified in x.

We solve this problem with a gradient-descent algorithm
similar to that originally proposed in [3], by optimizing
the padding bytes one at a time. Ideally, we would like
to compute the gradient of the objective function f with
respect to the padding byte under optimization. However, the
MalConv architecture is not differentiable in an end-to-end

1Note that q ≤ 0 if k ≥ d, which means that no byte can be manipulated
by this attack.

Algorithm 1 Adversarial Malware Binaries

Input: x0, the input malware (with k informative bytes, and
d−k padding bytes); q, the maximum number of padding
bytes that can be injected (such that k + q ≤ d); T , the
maximum number of attack iterations.

Output: x′: the adversarial malware example.
1: Set x = x0.
2: Randomly set the first q padding bytes in x.
3: Initialize the iteration counter t = 0.
4: repeat
5: Increase the iteration counter t← t+ 1.
6: for p = 1, . . . , q do
7: Set j = p+ k to index the padding bytes.
8: Compute the gradient wj = −∇φ(xj).
9: Set nj = wj/‖wj‖2.

10: for i = 0, . . . , 255 do
11: Compute si = n>j (mi − zj).
12: Compute di = ‖mi − (zj + si · nj)‖2.
13: end for
14: Set xj to arg mini:si>0 di.
15: end for
16: until f(x) < 0.5 or t ≥ T
17: return x′

manner, as the embedding layer is essentially a lookup table
that maps each input byte xj to an 8-dimensional vector
zj = φ(xj). We denote the embedding matrix containing all
bytes with M ∈ R256×8, where the row mi ∈ R8 represents
the embedding of byte i, for i = 0, . . . , 255. To overcome
the non-differentiability issue of the embedding layer, we
first compute the (negative) gradient of f (as we aim to
minimize its value) with respect to embedded representation
zj , denoted with wj = −∇φ(xj) ∈ R8. We then define
a line gj(η) = zj + ηnj , where nj = wj/‖wj‖2 is the
normalized (negative) gradient direction. This line is parallel
to wj and passes through zj . The parameter η characterizes its
geometric locus, i.e., by varying η ∈ (−∞,∞) one obtains
all the points belonging to this line. Ideally, assuming that
the gradient remains constant, the point zj will be gradually
shifted towards the direction nj while minimizing f . We thus
consider a good heuristic to replace the padding byte xj with
that corresponding to the embedded byte mi closest to the
line gj , provided that its projection on the line is aligned with
nj , i.e., that si = n>j (mi − zj) > 0. Recall that the distance
of each embedded byte mi to the line gj can be computed as
di = ‖mi − (zj + si · nj)‖2. A conceptual representation of
this discretization process is shown in Fig. 2. This procedure
is then repeated for each modifiable padding byte (starting
from a random initialization), and up to a maximum number
of iterations T , as described in Algorithm 1.

Generation of Adversarial Malware Binaries. Although
the padding bytes are generated by manipulating the input
vector x, creating the corresponding executable file without
corrupting the malicious functionality of the source file is quite



easy, as also explained in Sect. II and in [2]. It is however
worth mentioning that our attack is general, i.e., it can be
used to manipulate any byte within the input file. To this end,
one can first identify which bytes can be manipulated without
affecting the file functionality, and then optimize them (instead
of optimizing only the padding bytes).

V. EXPERIMENTS

We practically reproduced the deep neural network proposed
in [18], and performed the evasion attacks according to the
algorithm described in Sect. IV. In the following, we first
describe the employed setup, and then we discuss the results
obtained by comparing the efficiency of the proposed gradient-
based method with trivial random byte addition.

Dataset. We employed a dataset composed of 9, 195 malware
samples, which were retrieved from a number of sources
including VirusShare, Citadel and APT1. Additionally,
to evaluate the performances of the network we employed
4, 000 benign samples, randomly retrieved and downloaded
from popular search engines.

Network Performances. We evaluated the performances of
the deep neural network by splitting our dataset into a training
and a test set, each of them containing 50% of the samples of
the initial dataset. To avoid results that could be biased by a
specific training-test division, we repeated this process three
times and averaged the results. Under this setting, we obtained
an average precision of 92.83± 5.56% and an average recall
of 84.68± 11.71% (mean and standard deviation).2

A. Results on Evasion Attacks

We performed our tests by modifying 200 randomly-chosen
malicious test samples with Algorithm 1 to generate the corre-
sponding adversarial malware binaries. As for Algorithm 1,
we set the maximum number of attack iterations T = 20,
and the maximum number of injected bytes qmax = 10, 000.
As a result, we chose all malware samples that satisfied the
condition k+ qmax ≤ d, where k is the file size and d = 106.
While some malware samples are larger than this threshold,
the average file length in our sample set is 339,803 bytes. The
attack was performed by appending, at the end of each file,
bytes that were chosen according to two different strategies: a
random attack injecting random byte values, and our gradient-
based attack strategy. To verify the efficacy of the attack, we
measured for each amount of added bytes the average evasion
rate, i.e., the percentage of malicious samples that managed to
evade the network. Fig. 3 provides the attained results as the
number of bytes progressively increases, averaged on the three
aforementioned training-test splits. Notably, adding random
bytes is not really effective to evade the network. Conversely,
our gradient-based attack allows evading MalConv in 60% of
the cases when 10, 000 padding bytes are modified, even if
this amounts to manipulating less than 1% of the input bytes.

2Note that these results are different from [18], as we use different data
and experimental settings.

Fig. 3: Evasion rate against number of injected bytes.

Fig. 4: Distribution of the 10, 000 padding byte values injected
by the random (left) and gradient-based (right) attacks into a
randomly-picked malware sample.

The success of our gradient-based approach relies on the
fact that it guides the decision of which bytes to add, thus
creating an organized padding byte pattern specific to each
sample. To better clarify this concept, in Fig. 4 we consider
a sample that successfully evaded the network, and show the
distribution of the 10, 000 bytes added by the two attacks. Note
how, in the optimized case, only a small group of byte values
is consistently injected. This shows that the gradient guides
the choice of specific byte values that are repeatedly injected,
identifying a clear padding byte pattern for evasion.

B. Limitations of Our Analysis

We discuss here some limitations related to our analysis.
First, we have only evaluated the effectiveness of our attack
using 200 malware samples due to the computational complex-
ity of the attack, leaving a more extensive analysis as future
work. In comparison to [18], we have then employed a smaller
dataset, and considered an input file size d of 106 rather than
2 · 106. These are both factors that may facilitate evasion of
MalConv. Conversely, we found that appending bytes to the
end of the file reduces the effectiveness of the gradient-based
approach. To better realize this, in Fig. 5 we show that the
average norm of the gradient w computed over all attack
samples is much higher for the first bytes in the file. This is
reasonable, as files have different lengths, and the probability
of finding informative (non-padding) bytes for discriminating
malware and benign files decreases as we move away from the
first bytes. From the attacker’s perspective, this also means that
modifying the first bytes may cause a much larger decrease of
f(x) and, consequently, a much higher probability of evasion.
However, as described in Sect. II, modifying bytes within



Fig. 5: Mean gradient norm (per byte) over all attack samples.

the file while preserving functionality may be quite complex,
depending on the specific file and the content of its sections.
This is definitely an interesting avenue for future research.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we evaluated the robustness of neural network-
based malware detection methods that use raw bytes as input.
We proposed a general gradient-based approach that chooses
which bytes should be modified in order to change the
classifier decision. We applied it by injecting a small number
of optimized bytes at the end of a set of malicious samples,
and we used them to attack the MalConv network architecture,
attaining a maximum evasion rate of 60%.

These results question the adequateness of byte-based anal-
ysis from an adversarial perspective. In particular, the use
of deep learning on raw byte sequences may give rise to
novel security vulnerabilities. Binary-based approaches are
usually based on the hypothesis that all sections have the
same importance from the learning perspective. However, such
claim is challenged by the fact that there are typically strong
semantic differences between sections containing instructions
(e.g., text) and those containing, for example, debug in-
formation. Hence, performing manipulations directly on the
targeted files might be easier than expected.

In future work, we plan to particularly investigate this issue,
by exploring fine-grained, automatic changes to executables
that may be more difficult to counter than the injection of
padding bytes at the end of file. We also plan to repeat the
assessment of this paper on a larger dataset, more represen-
tative of recent malware trends (as advocated by Rossow et
al. [20]). We anyway believe that our work highlights a severe
vulnerability of deep learning-based malware detectors trained
on raw bytes, highlighting the need for developing more robust
and principled detection methods. Notably, recent research on
the interpretability of machine-learning algorithms may also
offer interesting insights towards this goal [10], [15].

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry of
Education and Research, under grant 16KIS0327 (IUNO); by
the EU H2020 project ALOHA, under the European Union’s
Horizon 2020 research and innovation programme (grant no.
780788); and by the PIS- DAS project, funded by the Sardinian
Regional Administration (CUP E27H14003150007).

REFERENCES

[1] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan. N-gram-
based detection of new malicious code. In COMPSAC ’04, pp. 41–42,
Washington, DC, USA, 2004. IEEE CS.

[2] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth. Evading machine
learning malware detection. In Black Hat, 2017.

[3] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
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