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Abstract. Malicious PDF files still constitute a serious threat to the
systems security. New reader vulnerabilities have been discovered, and
research has shown that current state of the art approaches can be easily
bypassed by exploiting weaknesses caused by erroneous parsing or incom-
plete information extraction. In this work, we present a novel machine
learning system to the detection of malicious PDF files. We have devel-
oped a static approach that leverages on information extracted by both
the structure and the content of PDF files, which allows to improve the
system robustness against evasion attacks. Experimental results show
that our system is able to outperform all publicly available state of
the art tools. We also report a significant improvement of the perfor-
mances at detecting reverse mimicry attacks, which are able to com-
pletely evade systems that only extract information from the PDF file
structure. Finally, we claim that, to avoid targeted attacks, a more care-
ful design of machine learning based detectors is needed.
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1 Introduction

Malicious PDF files still constitute a major threat to computer systems, as new
attacks against their readers have recently been released. The integration of
the PDF file format with third-party technologies (e.g., Javascript or Flash) is
often exploited to execute them. Despite the efforts of software vendors such as
Adobe, PDF readers are vulnerable to zero-day attacks, as the creation of ad-
hoc patches is often a complex task. Antivirus products also exhibit problems
at providing protection against novel or even known attacks, due to the various
code obfuscation techniques employed by most of the attacks [1].

Javascript is often adopted by attackers to exploit PDF vulnerabilities, by
resorting to popular techniques such as Return Oriented Programming and Heap
Spraying [2,3]. Some vulnerabilities also employed different attack vectors, such
as ActionScript. For example, CVE 2010-3654 exploits a vulnerability in Adobe
Flash Player by means of a “Just in Time Spraying” approach [4]. Some attacks
also use advanced encryption methods for hiding malicious code or malicious
embedded files [5].
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Most of commercial anti-malware tools resort to signature-based approaches
that are based on heuristics or string matching. However, they are often not
able of detecting novel attacks, as they are inherently weak against polymor-
phism [6]. For this reason, recent research works analyzed malicious PDF files
from two different perspectives: first, they examined malicious Javascript code
within PDF files, through both static and dynamic (behavioral) analysis [7–9].
Then, they focused on the external structure of the PDF files to detect mali-
cious ones regardless of the exploit they carried [10–12]. The latter approach is
considered to be more effective than the former, as it allows to detect a wider
variety of attacks, including non-Javascript ones.

However, further research proved that such strategy is extremely vulnerable
against targeted attacks [13,14]. Its vulnerabilities are related to two aspects:
(a) File parsing, as the logical connection among objects is often ignored and
embedded contents are overlooked; (b) Weak information, i.e., data that can
be easily crafted by an attacker. For this reason, new efforts have been made
to provide a better detection of malicious Javascript code [15,16] and to harden
security through the adoption of sandboxes [17].

In this work, we present a novel machine learning-based system to the detec-
tion of malicious PDF files that extracts information both from the structure
and the content of the PDF file. Information on the file structure is obtained by
examining: (a) basic file structure properties and (b) objects structural prop-
erties, in terms of keywords. Content-based information is obtained from: (a)
malformed objects, streams and codes, (b) known vulnerabilities in Javascript
code and (c) embedded contents such as other PDF files. We leverage on two
well-known tools for PDF analysis, namely, PeePDF1 and Origami2, to provide
a reliable information extraction process and to avoid parsing-related vulnera-
bilities.

With this approach, it is possible to accurately detect PDF malware deployed
in the wild (including non-Javascript attacks), with very low false positives.
At the same time, we report a significant improvement on detecting targeted
attacks in comparison to the other state of the art approaches. We also show
that a careful choice of the learning algorithm is crucial to ensure a correct
detection of evasion attacks. We therefore encourage further research on this
aspect, as we believe it can provide remarkable improvements to the security of
machine learning systems. This work is an extension of a previously presented
paper presented by us [18]. In this version, we provide a detailed analysis of the
evasion attacks that might be perpetrated against a malicious PDF file detector,
as well as a deeper insight into the solutions we have adopted to detect them.

Contributions. We summarize the contributions provided by this work in four
points:
1 http://eternal-todo.com/tools/peepdf-pdf-analysis-tool.
2 http://esec-lab.sogeti.com/pages/origami.

http://eternal-todo.com/tools/peepdf-pdf-analysis-tool
http://esec-lab.sogeti.com/pages/origami
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– We develop a novel, machine learning based system to the detection of mali-
cious PDF files that extracts information from the structure and the content
of a PDF file;

– We experimentally evaluate the performances of our system on a dataset con-
taining various PDF-related vulnerabilities. We compare our results to the
ones obtained using publicly available tools;

– We evaluate the robustness of our system against evasion attacks that are able
to completely bypass most of the released PDF files detectors;

– We discuss the limits of our system and the importance that the learning
algorithm has to ensure a good robustness. In relation to that, we provide
research guidelines for future work.

Structure. This work is divided into six Sections beyond this one. Section 2
provides the basics to understand the structure of the PDF files. Section 3
presents related works on malicious PDF detection. Section 4 describes our gen-
eral methodology to the detection of malicious PDFs, and our strategies to tackle
evasion attacks. Section 5 provides the experimental results. Section 6 discusses
the limits of our approach and provides guidelines for future research work.
Section 7 provides the conclusions of our work.

2 PDF File Format

A PDF file is a hierarchy of objects logically connected to each other. Its struc-
ture is composed by four parts [19]:

– header: a line that gives information on the PDF version used by the file.
– body: the main portion of the file, which contains all the PDF objects.
– cross-reference table: it indicates the position of every indirect object in

memory.
– trailer: it gives relevant information about the root object and number of

revisions made to the document. The root object is the first, in the logical
hierarchy, to be parsed by the reader. New revisions (also called versions) are
created every time the user causes changes to the PDF file. This leads to the
generation of a new trailer and an updated cross-reference table, which will
be appended at the end of the file.

The objects contained in the body can be of two types. Indirect ones are typically
introduced by the expression ObjectNumber 0 obj and can be referenced. Direct
objects, on the contrary, cannot be referenced and are typically less complex
than the former ones. Most of indirect objects are dictionaries that contain a
sequence of coupled keywords (also called name objects), which are introduced
by a /. Keywords provide a description of the data inside the object itself or in
one of its references (e.g., in case of an attack, the keyword /Javascript can
be related to the presence of malicious code). An object might also include a
stream, which usually contains compressed data that will be parsed by the reader
and visualized by the user (e.g., in case of an attack, a malicious code can be
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compressed into a stream that will be deployed along with the object containing
the keyword /Javascript). For more information on the PDF structure, please
check the PDF Reference [19].

3 Related Work

First approaches to malicious PDF detection resorted to static analysis on the
raw (byte-level) document, by employing n-gram analysis [20,21] and decision
trees [22]. However, these approaches were not focused on detecting PDF files, as
they were developed to detect as many malware as possible, such as DOC and
EXE based ones. Moreover, they are vulnerable to modern obfuscation tech-
niques, such as AES encryption [5], and they can be also evaded by polymor-
phic malware that employ techniques like Return Oriented Programming, Heap
Spraying or JIT Spraying [2–4].

Being Javascript the most popular attack vector contained in PDF files,
subsequent works focused on its analysis. Many solutions have been proposed
in the context of web security. For instance, Jsand [7], Cujo [23], Zozzle
[24], Prophiler [25] are popular tools for the static and dynamic analysis of
Javascript code. These tools are often adopted to detect threats embedded in
different document formats.

Wepawet3, a popular framework for the analysis of web-based threats,
relies on JSand to analyze Javascript code within PDF files. Jsand [7] adopts
HtmlUnit4, a Java-based browser simulator, and Mozilla’s Rhino5 to extract
dynamic behavioral features from the execution of Javascript code. The system
is trained on samples containing benign code and resorts to anomaly detection to
detect malicious files, by leveraging on the strong differences between legitimate
and dangerous ones.

A similar approach is adopted by MalOffice [26]. Mal Office uses pdftk6

to extract Javascript code, and CWSandbox [27] to analyze the code behavior:
Classification is carried out by a set of rules (CWSandbox has also been used to
classify general malware behavior [28]). MDScan [9] follows a different approach
as malicious behavior is detected through Nemu, a tool able to intercept memory-
injected shellcode. A different approach, with some similarities to the previous
ones, has been developed in ShellOS [29].

Dynamic detection by executing Javascript code in a virtual environment
is often time consuming and computationally expensive, and it is vulnerable
to evasion when an attacker is able to exploit code parsing differences between
the attacked system and the original reader [9]. To reduce computational costs,
PJScan [8] proposed a fully static lexical analysis of Javascript code by training
a statistical classifier on malicious files.
3 http://wepawet.iseclab.org/index.php.
4 http://htmlunit.sourceforge.net.
5 http://www.mozilla.org/rhino.
6 http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit.

http://wepawet.iseclab.org/index.php
http://htmlunit.sourceforge.net
http://www.mozilla.org/rhino
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit
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In 2012 and 2013, malicious PDF detectors that extract information on the
structure of the PDF file, without analyzing Javascript code, have been devel-
oped. We usually refer to them as structural systems [10–12]. PDFRate7 is the
most popular, publicly available approach. It is based on 202 features extracted
from both document metadata and structure and it resorts to random forests to
perform classification. Such approach allows to detect even non-Javascript vul-
nerabilities such as Actionscript based ones. Moreover, it provided significantly
higher performances when compared to previous approaches. However, recent
works [13,14] showed that such systems are easily attackable by exploiting, for
example, parsing vulnerabilities.

As structural systems might be unreliable under targeted attacks, research
focused on improving malicious Javascript code detection. New approaches
resorted to discriminant API analysis [15], code instrumentation [16] and sand-
boxing [17]. Recently, a complete state of the art survey of malicious PDF files
detectors has been proposed [30].

4 Proposed Detection Approach

As stated in Sect. 3, the vast majority of recent works on malicious PDF detection
focused on the analysis of either the Javascript code (content-based systems) or
the PDF file structure (structural systems). Such information is usually processed
by a machine learning system, i.e., it is converted into a vector of numbers
(features) and sent to a mathematical function (classifier or learner), whose
parameters have been tuned through a process called training. Such training is
performed by using samples whose classes (benign or malicious) were already
known.

However, systems developed until now suffer from several weaknesses, which
can be summed up in three categories:

– Design Weaknesses: some systems might be designed to only detect a spe-
cific type of attack (e.g., Javascript-based ones). However, such choice might
make the system easy to evade when, for example, ActionScript is used [10].

– Parsing Weaknesses: some systems resort to what we define as naive pars-
ing, i.e., analyzing the whole file content without considering its logical struc-
ture. This might lead to examining, for example, objects that will never be
parsed by the reader. This might expose such systems to evasion attacks, as it
is very easy to introduce changes that will deceive the systems without having
any impact on the reader. Moreover, ignoring the logical structure also leads
to overlooking embedded content, such as other PDF files [11,13].

– Features Weaknesses: some features might be easily crafted by an attacker.
For example, a system might rely on the number of lowercase or uppercase
letters of the file. Modifying such elements is a straight-forward task and might
simplify the system evasion.

7 http://pdfrate.com/.

http://pdfrate.com/


An Evasion Resilient Approach to the Detection of Malicious PDF Files 73

To overcome these weaknesses, we propose a new machine learning-based
approach that extracts information from the structure and the content of a
PDF file. This method is purely static and, as the file is not executed by a PDF
rendering engine.

Figure 1 shows the high-level architecture of our system. To extract informa-
tion, we created a parser that adopts PeePDF and Origami. These tools perform
an in-depth analysis of PDF files to detect known exploits, suspicious objects, or
potentially malicious functions (for example, see vulnerability CVE-2008-2992).
Moreover, they will extract and parse, as a separate sample, any embedded PDF
file. When combined, these tools provide a reliable parsing process in compari-
son to other ones, such as PdfID, which naively analyzes PDF files ignoring their
logical properties, thus allowing attackers to easily manipulate them [13].

Each PDF file will be represented by a vector composed by: (a) 8 features
that describe the general structure of the file in terms of number of objects,
streams, etc.; (b) A variable number of features (usually not more than 120,
depending on the training data) related to the structure of the PDF objects.
Such features are represented by the occurrence of the most frequent keywords
in the training dataset; (c) 7 features related to the content of the PDF objects.
In particular, the PDF objects are parsed to detect known vulnerabilities, mal-
formed objects, etc.

The remaining of this Section is organized as follows. Section 4.1 provides a
detailed description of all the features that we extract to discriminate between
benign and malicious PDF files. Section 4.2 describes and motivates the chosen
classification algorithm. Section 4.3 describes the evasion problem and the strate-
gies that have been adopted to counteract it.

Fig. 1. High-level architecture of our system.
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4.1 Features

General Structure. We extract 8 features that contain information about: (i)
The size of the file; (ii) The number of versions of the file; (iii) The number
of indirect objects; (iv) The number of streams; (v) The number of compressed
objects; (vi) The number of object streams8; (vii) The number of X-ref streams9;
(viii) The number of objects containing Javascript.

Whereas these features may not be discriminant when singularly used, they
provide a good overview of the whole PDF structure when used together.
For instance, malicious PDFs (and their number of objects/streams) are often
smaller, in terms of size, than legitimate ones. This is reasonable, as malicious
PDFs do not usually contain text. The smaller is the file size, the smaller is the
time needed to infect new victims. The number of versions is usually higher than
1 in benign files, as a new version is typically generated when a user directly
modifies or extends a PDF file. Malicious files usually exhibit a higher number
of Javascript objects compared to benign files. This is because many exploits
are executed by combining multiple Javascript pieces of code in order to gen-
erate the complete attack code. Finally, object and X-ref streams are usually
employed to hide malicious objects inside the file, and compressed objects can
include embedded contents, such as scripting code or other EXE/PDF files.

Object Structure. We extract the occurrence of the most characteristic key-
words defined in the PDF language. Characteristic keywords are the ones that
appeared in our training dataset D with a frequency that is higher of a threshold
t. Other works, such as [12], obtained a similar threshold by arbitrarily choosing
a reasonable value for it. We obtain t in a more systematic way, so that it is
better related to the data in D. In order to do so, we:

1. Split D into Dm and Dl. Dm only contains malicious files and Dl only
legitimate files. Obviously, D = Dm ∪ Dl;

2. For each dataset, and for each keyword kn of the PDF language, we define:
fn = F (kn), where fn represents the number of samples of each dataset in
which kn appears at least once;

3. For each dataset, we extract the frequency threshold value t by resorting to a
k-means clustering algorithm [31] with k= 2 clusters, computed through an
euclidean distance. To precisely determine the sizes of the two clusters, the
algorithm has been tested five times with different starting points10. In this
way, basing on their fn value, we split keywords into two groups. Thus, for
each dataset, we extract the set of keywords K defined as: K = {(kn)|fn > t}.
Therefore, for Dm we will obtain a set Km and for Dl a set Kl;

4. Finally, we get the final set of characteristic keywords Kt by: Kt = Km ∪Kl.
8 Streams containing other objects.
9 A new typology of cross-reference table introduced by recent PDF specification.

10 The seed value has been set to the default value indicated here: http://weka.
sourceforge.net/doc.dev/weka/clusterers/SimpleKMeans.html.

http://weka.sourceforge.net/doc.dev/weka/clusterers/SimpleKMeans.html
http://weka.sourceforge.net/doc.dev/weka/clusterers/SimpleKMeans.html
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The number of keywords in Kt depends on the training data and on the clus-
tering result. The reason why we considered characteristic keywords occurrences
is that their presence is often related to specific actions performed by the file.
For example, /Font is a characteristic keyword in benign files. This is because
it represents the presence of a specific font in the file. If this keyword occurs a
lot inside one sample, it means that the PDF renderer displays different fonts,
which is an expected behavior in legitimate samples. Selecting the most char-
acteristic keywords also helps to ignore the ones that do not respect the PDF
language standard. Including the occurrence of non-characteristic or extraneous
keywords in the feature set might make the system vulnerable to evasion attacks,
as an attacker could easily manipulate the PDF features without altering the
file rendering process.

Content-Based Properties. We verify if a PDF file is accepted or rejected by
either PeePDF or Origami. There are two features associated to this information,
one for PeePDF and one for Origami and they are extracted by means of a non-
forced scan11. Such scan evaluates the overall integrity of the file. For example, if
the PDF file exhibits a bad or malformed header, it will be immediately rejected
by the two tools. In more complex cases, rejecting a file usually means that
it contains suspicious elements such as the execution of code, malformed or
incorrect x-ref tables, corrupted headers, etc. However, such elements might as
well be present in legitimate samples. Therefore, PeePDF and Origami cannot be
used alone as malicious PDF files detectors, as they would report a lot of false
positives.

There are also 5 features that provide information about malformed (a)
objects (e.g., when scripting codes are directly put in a PDF dictionary), (b)
streams, (c) actions (using keywords that do not belong to the PDF language),
(d) code (e.g., using functions that are employed in vulnerabilities) and (e) com-
pression filters (e.g., when compression is not correctly performed). This is done
as malicious PDF files often contain objects with some of the aforementioned
malformations, as the reader would parse them without raising any warnings
about them.

4.2 Classification

We resort to a supervised learning approach, i.e., both benign and malicious
samples are used for training, and we adopted decision trees classifiers [32].
Decision trees are capable of natively handling different types of features features,
and they have successfully been used in previous works related to Malicious PDF
files [10,11,15].

As classifier, we choose the Adaptive Boosting (AdaBoost) algorithm, which
linearly combines a set of weak learners, each of them with a specific weight,
to produce a more accurate classifier [33]. A weak learner is a low-complexity
classification algorithm that is usually better than random guessing. The weights
11 A scan that is stopped if it finds anomalies in the files. This definition is valid for

PeePDF; in Origami, such scan is defined as standard mode.
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of each weak learner are dependent on the ones of the training instances with
which each learner is trained. Example of weak learners are decision stumps
(i.e., decision trees with only one leaf) or simple decision trees (J48). Choosing
an ensemble of trees usually guarantees more robustness against evasion attacks
compared to a single tree, as an attacker should know which features are most
discriminant for each tree of the ensemble to perform an optimal attack.

4.3 Evasion Detection

Introduction on Mimicry. Differently from current state of the art
approaches, the features of our system, as well as its parsing mechanism, have
been designed to consider the possibilities of deliberate attacks against struc-
tural systems. Typically, an attacker crafts a malicious file (for instance, by
adding objects that will never be parsed by the reader) so that the feature val-
ues extracted by the analysis system are closer to the ones of a file that is treated
as benign by the system itself. This approach is called mimicry.

As already observed by Biggio et al. [34], the effectiveness of the attack
depends on the amount of knowledge possessed by the attacker. We usually
distinguish between perfect and imperfect knowledge. In case of perfect knowl-
edge, the attacker should be aware of the features and the classification algorithm
employed by the system that is attacked. He should also be knowledgeable about
how the features are computed. In case of imperfect knowledge, the attacker
has incomplete information about the system features and classification algo-
rithm. This attack is performed by means of algorithm such as gradient descent
[34], but some simplified versions have been in other works, for example to test
PDFRate [11].

Mimicry is an attack that is performed on the feature level. This means
that first the attacker has to determine which features to modify and how many
changes should be made on them. Then, he should rebuild the sample from
the feature values he has determined. Finally, he has to ensure that the tar-
geted system exactly extracts, from the rebuilt sample, the feature values he
has obtained in the first step. Rebuilding the sample from specific feature values
might be a very difficult task as some changes, although valid on the feature level,
might break the functionalities of the file itself. For instance, keeping certain key-
words is critical to assure the correct functionality of the file, and they cannot
be removed. A possible solution to this problem has been proposed by Snrdic
et al. [14], by limiting the changes to only adding features on a certain area of
the file. Although effective, the authors also state that this changes might easily
be detected.

Reverse Mimicry. To address the problems introduced by employing mimicry,
an attacker can perform a variant of this attack called reverse mimicry, i.e.,
crafting a benign sample by injecting malicious contents in a way that its fea-
tures receive as few changes as possible. To achieve this, the malicious con-
tent is injected so that the structure of the file (from which structural systems
extract the file features) is only slightly changed. This has been shown to be
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Fig. 2. A simplified example of the mimicry and reverse mimicry attacks. On the left
(mimicry) it can be seen that the features of a malicious sample are changed to go
into the benign region. On the right (reverse mimicry) a benign sample is injected with
malicious content with few structural changes, so that the sample could keep staying
in the benign region.

extremely effective against structural systems [13]. To better explain the differ-
ences between mimicry and reverse mimicry, Fig. 2 shows a graphical, simplified
representation in a 2-D feature space of the two attacks.

Our previous work described three variants of reverse mimicry [13]: (a) Java
script (JS) Injection (injecting a Javascript object that exploits a vulnerability),
(b) EXE Embedding (injecting an executable that is automatically executed at
runtime) and (c) PDF Embedding (injecting a malicious PDF file that is opened
after the main file).

Detecting Reverse Mimicry. To tackle reverse mimicry attacks, we resort to
different strategies. To counteract PDF Embedding we look for objects that, in
their dictionary, contain the keyword /EmbeddedFiles. If such object is found,
the relative object stream is decompressed, saved as a separate PDF and then
analyzed. If this file is found to be malicious, then the original starting file will
be considered malicious as well. To detect the other two attacks, it is important
to correctly tune the learning algorithm parameters that we chose to train our
system. In particular, we show that the robustness of the learning algorithm is
strongly dependent on two aspects:

– The weight threshold (W ) parameter of the AdaBoost algorithm (expressed,
in our case, as a percentage) [33]. Thanks to this value, it is possible to select
the samples that will be used, for each iteration of the AdaBoost algorithm,
to tune the weights of the weak classifiers. In particular, for each iteration,
the samples are chosen as follows:
1. We order the training set samples by their normalized weights (the lowest

weight first). Samples that have been incorrectly classified at the previous
iteration get higher weights. The normalized weights sum Sw is set to zero.

2. Starting from the first sample, we compute Sw = Sw + ws, where ws is
the normalized weight of the sample. If Sw < W , then the sample will be
employed for the training12. Otherwise, the algorithm stops.

12 If W is in its percentage form, it must be divided by 100 first.
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Fig. 3. A simplified example of the optimization effects on the decision function (orig-
inal on the left, optimized on the right). In blue we represent a benign sample for
which the classifier had to adapt its shape in order to correctly classify it (Color figure
online).

The usage of a reduced weight threshold means that the weak classifiers will
not be trained on samples that have been misclassified during previous iter-
ations. This avoids that the global decision function changes its shape trying
to correctly classify a particularly hard sample. This might also lead to more
false positives.

– The training data quality. The reverse mimicry attacks directly address the
shape of the classifier decision function [13], which depends on the weights
of each weak classifier. Some functions might be particularly vulnerable after
being trained, i.e., might have a combination of weights that could be par-
ticularly sensitive to reverse mimicry attacks. An empirical way to fix this
problem is tuning the function weights by using resampling, i.e., generating
artificial training data from the samples set obtained, given a specific weight
threshold W . However, tuning the weights of an already robust function might
create a vulnerable shape. Therefore, this empirical correction should only be
used after having checked the weights of the function and after having verified
its vulnerability. We call this correction function optimization.

Figure 3 shows a simplified example of possible performance optimizations
effects. From this Figure we can observe that, when performances are optimized,
the shape of the decision function will not try to adapt to the blue benign train-
ing sample. This results in a simplified decision function shape. As a further
consequence, the blue sample will be misclassified. However, benign samples (in
green) are now much closer to the boundary, and this will make a reverse mimicry
attack applied on these samples most likely fail, as even with slight changes they
would end up in the malicious region.

5 Experimental Evaluation

We start this Section by discussing the dataset adopted in our experiments, as
well as the training and test methodology for evaluating performances. Then, we
describe two experiments. In the first one, we compared the general performances
of our approach, in terms of detection rate and false positives, to the ones of the
other state of the art tools. In particular, we focused on PJScan, Wepawet, and
PDFRate, as they can be considered the most important and publicly available
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research tools for detecting malicious PDF files. The second experiment tested
our system against the reverse mimicry attacks that have been described in
Sect. 4.3, and compared its results to the ones provided by the tools described in
the previous experiment. We do so by producing a high number of real, working
attack samples.

Dataset. We executed our experiments using real and up-to-date samples of
both benign and malicious PDFs in-the-wild. Overall, we collected 11,138
unique malicious samples from Contagio13, a well-known repository that pro-
vides information about latest PDF attacks and vulnerabilities. Moreover, we
randomly collected 9,890 benign PDF samples, by resorting to the public Yahoo
search engine API (http://search.yahoo.com). We kept a balance between
malicious and benign files to ensure a good supervised training.

For the second experiment, we created 500 attack samples variants for each
of the three attacks described in Sect. 4.3: Javascript Injection, EXE Embedding
and PDF Embedding. Hence, we generated a total of 1500 real attack samples.

Training and Test Methodology. For the first experiment, to carefully evalu-
ate the performances of our system, we randomly split our data into two different
datasets:

– A training set composed by 11,944 files, split into 5,993 malicious and 5,951
benign files. This set was used to train the classifier.

– A test set composed by 9,084 files, split into 5,145 malicious and 3,939
benign files. This set was used to evaluate the the classifier performances.

This process was repeated three times: we computed the mean and the standard
deviation of the True Positives (TP) and False Positives (FP) over these three
replicas. As a unique measure of the classification quality, we also employed the
so-called Matthews Correlation Coefficient (MCC) [35], defined as:

MCC =
TP · TN − FP · FN

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TN and FN refer to the number of true and false negatives, respectively.
In our experiments, we trained an AdaBoost [33] ensemble of J48 trees, whose

parameters were optimized with a 10-fold cross validation. We selected this classi-
fier as it showed the best accuracy compared to single classifiers (we also exper-
imented with random forest and SVM) or other ensemble techniques on our
dataset.

For the second experiment, we employed the same training sets of the first
experiment to train the system but, as a test set, the 1500 attack samples
described before have been adopted.

5.1 Experiment 1: General Performances

In this experiment we compared the performances of our system to three public
research tools for the detection of malicious PDFs: Wepawet, PJScan and PDFRate

13 http://contagiodump.blogspot.it.

http://search.yahoo.com
http://contagiodump.blogspot.it
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Table 1. Experimental comparison between our approach and other academic tools.

System TP(%) FP(%) MCC

Our System 99.805 (±.089) .068 (±.054) .997

PDFRate 99.380 (±.085) .071 (±.056) .992

Wepawet 88.921 (±.331) .032 (±.012) .881

PJScan 80.165 (±1.979) .013 (±.012) .798

(see Sect. 3). As PJScan employs a One Class SVM, we did not use any benign
files to train the system. PJScan was trained with the same malicious samples
used for our system. PDFRate was trained with a balanced dataset of 5000 benign
and 5000 malicious samples, the latter collected from Contagio. We point out
that there are three different instances of PDFRate: Each of them employs the
same classifier, but is trained with different data. To provide a fair comparison
with our system, we considered only the one trained on the Contagio dataset,
as Contagio is the same source from which we collected our malware samples.
We also observe that the training size of Wepawet is unfortunately unknown14.
Even though a perfect comparison would require the same exact training set
for all the systems, we believe that, in this situation, our a set up was a very
good compromise with which we could provide useful information about their
performances.

In Table 1 we show the results of the comparison between our system and the
other tools. For each system, we show the average percentage of true positives
(TP), false positives (FP), the related standard deviation within parentheses,
and the MCC coefficient computed on mean values for TP and FP. We point out
that Wepawet was not able to analyze all the samples. In particular, it examined
5,091 malicious files and 3,883 benign files. We believe there were some parsing
problems that affected the system, as it did not fully implement all the Adobe
specifications and only simulated the execution of embedded Javascript code and
executables. We also observe that PJScan considered as benign all the samples
for which it could not find evidence of Javascript code usable for the analysis.

From this Table, it is evident that our system completely outperformed
Wepawet and PJScan. PJScan showed the smallest false positive rate, but exhib-
ited a much lower detection rate compared to the other systems. Wepawet per-
formed slightly better than our solution in terms of FP rate, but it provided a
lower TP detection rate. We also observe than our system performed better than
PDFRate. In fact, results are superior both in terms of TP and FP rate, with a
higher MCC coefficient. We point out that our approach was better to PDFRate
while adopting a significantly lower number of features. In fact, PDFRate resorts
to 202 features to perform its analysis [11], whereas our system has never gone
beyond 135 (considering the variable number of object-related features).

14 Being Wepawet and PDFRate online services, we could not train such systems with
our own samples.
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5.2 Experiment 2: Evasion Attacks

In this experiment we produced, for each attack described in Sect. 4.3, 500 attack
variants for a total of 1500 samples, as the number of samples created in our
previous work was not enough for deeply assessing their efficiency against the
various systems [13]. The vulnerabilities exploited in these attacks are similar to
the ones presented in our previous work, with some differences15.

Table 2 shows the performances, in terms of true positives (TP), of the systems
tested during the previous experiment (trained with the same data and with
the same splits as before). It can be observed that Wepawet exhibited excellent
performances on EXE Embedding and JS Injection. That was expected because
reverse mimicry addresses static structural systems. However, Wepawet was not
able to scan PDF Embedding attacks due to parsing problems. As we pointed out
in the previous experiment, we believe that Wepawet did not fully implement the
Adobe PDF specifications, and was therefore not able of analyzing some elements
of the file. PJScan also exhibited several parsing problems in this experiment and
was not able of analyzing any of the samples we provided. This is because PJScan
could not analyze embedded files, i.e., PDFs or other files such as executables,
and only focused on Javascript analysis (which also failed, in this case). Finally,
PDFRate poorly performed, thus confirming the results of our previous work [13].

With respect to our system, we notice that it was able to detect all PDF
Embedding attacks, thanks to its advanced parsing mechanism. As shown in
Table 2, using the default weight threshold, namely, W = 100 (the one adopted
in Experiment 1) with no function optimization, we obtained performances that
were already better than PDFRate, yet not fully satisfactory. With W = 1 and an
optimized decision function, performances were almost two times better, com-
pletely outperforming all the other static approaches. Using W = 1 on the test
data of Experiment 1, we also noticed that false positives increased up to 0.2 %.
This was predictable, as explained before, as a simplified decision function shape
might lead to more mistakes in the detection of benign files. It is a small trade
off we had to pay for a higher robustness. The standard deviation values deserve
a deeper discussion in the next section.

Table 2. Comparison, in terms of true positives (TP), between our approach and
research tools with respect to evasion attacks (%).

System PDF E. EXE E. JS INJ.

Our System (W = 1, Optimized) 100 (±0) 62.4 (±12.6) 69.1 (±16.9)

Our System (W = 100) 100 (±0) 32.26 (±9.18) 37.9 (±10.65)

PDFRate 0.8 0.6 5.2

Wepawet 0 99.6 100

PJScan 0 0 0

15 For EXE Embedding we exploited the CVE-2010-1240 vulnerability and for PDF
Embedding and Javascript Injection we exploited the CVE-2009-0927.



82 D. Maiorca et al.

6 Discussion

Results attained in the second experiment showed that the features we had cho-
sen allowed for a significantly higher robustness when compared to the state of
the art. However, the high standard deviation attained in Experiment 2 also
showed some limits in our approach: In this work we mainly focused on defining
improving robustness by defining a more powerful set of features, but we did
not design a robust decision function so that its shape would guarantee more
robustness against targeted attacks. Therefore, the performances optimizations
we have introduced in the previous section are only empirical, i.e., they are
strongly dependent on the training data that are used. As future work, it would
be interesting to design of a more robust decision function that, regardless of the
quality of the training data, was able to reliably detect targeted attacks. This
aspect has been often overlooked, especially in computer security applications
and has been pointed out, for example, by Biggio et al. [34,36,37]. It would
be also interesting to analyze the effects of poisoning attacks on the classifier
detection, as our approach only focused on test-time evasion attacks [38,39].
Moreover, recent works have shown that clustering algorithms can also be vul-
nerable against evasion and poisoning attacks [40,41]. Since our method resorts
on a clustering phase, possible future works might also address its resilience
against such attacks.

7 Conclusions

Malicious PDF files have become a well-known threat in the past years. PDF
documents still constitute a very effective attack vector for cyber-criminals,
being their readers often vulnerable to zero-day attacks. Despite all the detec-
tion approaches that have been developed during the years, research has shown
how it is possible to craft PDF samples so that it is easy for an attacker to
evade even the most sophisticated detection system. In this work, we presented
a new approach that leveraged on both structural and content-based information
to provide a very accurate detection of PDF malware. Our approach has been
designed to cope with evasion attacks, thus significantly improving the detec-
tion of reverse mimicry attacks. Finally, our work pointed out the need of secure
learning techniques for malware detection, as vulnerabilities of machine learning
systems seriously affect their performances at detecting targeted attacks.
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