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Abstract. A new theoretical framework for the analysis of linear com-
biners is presented in this paper. This framework extends the scope of
previous analytical models, and provides some new theoretical results
which improve the understanding of linear combiners operation. In par-
ticular, we show that the analytical model developed in seminal works
by Tumer and Ghosh is included in this framework.

1 Introduction

One of the main open problems in the field of multiple classifier systems is the
lack of a general theoretical framework which can give a unifying view of the
large number of classifier combining rules and ensemble construction methods
proposed so far in the literature [6]. With regard to combining rules, some theo-
retical results, with limited scope, are currently available for the majority voting
and the linear combination of classifiers outputs. In particular, a theoretical
framework for linear combiners, which are the focus of this paper, has been de-
veloped in seminal works by Tumer and Ghosh [8, 9], and was then exploited
and extended in [1] and [2]. Theoretical analysis of linear combiners were also
reported in [3–5]. The framework by Tumer and Ghosh was the first to provide
useful insights into the behaviour of the linear combination by simple averag-
ing, and some practical guidelines to the design of linearly combined classifier
ensembles [8,9]. Fumera and Roli extended these results to the weighted average
combining rule [2], and derived some guidelines for the choice between simple
and weighted averaging. Although the theoretical predictions of the model by
Tumer and Ghosh are derived under very strict and unrealistic assumptions, the
authors noted that they were confirmed with good accuracy on many real data
sets [2]. This raised an issue about the scope of the model by Tumer and Ghosh.

The work presented in this paper is a by-product of an attempt to provide
an explanation to the above issue. We found that the theoretical analysis of the
misclassification probability of individual and linearly combined classifiers given
by Tumer and Ghosh can be developed under a new theoretical framework, which
is presented in Sect. 2. The new theoretical framework has a broader scope than
the one by Tumer and Ghosh, and includes it as a particular case, as explained
in Sect. 3. We finally show in Sect. 4 that our framework provides some more
insights into the operation of linear combiners, and also provides a partial answer
to the open issue mentioned above about the prediction capability of Tumer and
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Fig. 1. True posteriors (solid lines) around the ideal boundary xopt between ωi and ωj ,
and estimated posteriors (dashed lines) leading to the boundary xb, and to an added
error (dark gray area) over Bayes error (light gray area).

Ghosh model. We believe that the results presented in this paper can be a further
step towards a more general framework for multiple classifier systems.

2 A Bayesian Framework for Generalization Error
Analysis

Consider a given C-class classification problem, and a classifier which provides
estimates fk(x), k = 1, . . . , C, of the a posteriori probabilities P[ωk|x], where
x denotes a feature vector. The fk(x)’s are considered random variables (their
randomness depends for instance on the random choice of the training set). If
Bayes decision rule is applied to the estimated posteriors, x is assigned to the
class ωi such that i = arg maxkfk(x), and non optimal decisions are taken if
arg maxkfk(x) �= arg maxkP[ωk|x]. This causes an additional misclassification
probability (named added error in [8, 9]) over Bayes error. In the following we
consider the case of a one-dimensional feature space: all the results can be ex-
tended to multi-dimensional feature spaces as described in detail in [7].

The framework by Tumer and Ghosh is based on analyzing the added error in
a region of the feature space around an ideal boundary xopt between two classes
ωi and ωj , in the case in which the estimation errors lead to a boundary xb

between the same classes, which can be shifted from the ideal one. An example
is given in Fig. 1. In this case, it is easy to see that the added error is given by

eadd(xb) =
∫ xb

xopt

(P[ωj |x] − P[ωi|x]) P[x]dx. (1)

Note that it depends on the posteriors of classes ωi and ωj only.
Our aim is instead to analyze the added error under more general conditions,

namely in a region of the feature space around any given estimated boundary
xb between two classes ωi and ωj , without making any assumption on the true
posteriors or on the presence of ideal boundaries in such region. To this aim, con-
sider a given interval [x1, x2] which contains an estimated boundary xb. Assuming



Bayesian Analysis of Linear Combiners 3

Fig. 2. Two possible realizations of the estimates of the posteriors of classes ωi and
ωj (dashed lines), leading to an estimated class boundary xb. The true posteriors are
shown as solid lines. The difference Δeadd(xref , xb) (xref is the same in both plots)
corresponds to the gray areas: it is positive in the left and negative in the right.

without loss of generality that fi(xb) > fj(xb) for x < xb, so that x is assigned
to ωi, if x < xb, the added error in [x1, x2] can be written as a function of xb,
as eadd(xb) =

∫ xb

x1
(P[ω(x)|x] − P[ωi|x])P[x]dx +

∫ x2

xb
(P[ω(x)|x] − P[ωj |x])P[x]dx,

where ω(x) = arg maxωk
P[ωk|x]. Note that eadd(xb) depends on the maximum of

the posteriors in each x, which does not necessarily coincide with the posterior of
ωi or ωj , contrary to the case considered by Tumer and Ghosh. To the purpose of
our analysis, namely the comparison between the added error of individual classi-
fiers and of their linear combination, it is convenient to remove the above depen-
dence on P[ω(x)|x]. This can be achieved by considering any fixed reference point
xref ∈ [x1, x2], and by rewriting eadd(xb) as eadd(xref) + [eadd(xb) − eadd(xref)],
where eadd(xref) is the added error that one would get if the estimated boundary
xb lay in xref . The term between square brackets is the difference between the
added error when the estimated boundary lies in a point xb, and eadd(xref), and
will be denoted as Δeadd(xref , xb). It is easy to see that

Δeadd(xref , xb) =
∫ xb

xref

(P[ωj |x] − P[ωi|x]) P[x]dx . (2)

An example is given in Fig. 2. Note now that Δeadd(xref , xb) depends on the pos-
teriors of ωi or ωj only, contrary to both eadd(xref) and eadd(xb). The main idea
behind our framework is to express the added error of each individual classifier,
as well as the one of the linear combiner, using the same reference point xref , as
the sum of eadd(xref), which is a constant term identical for each classifier, and
the term Δeadd(xref , ·), which can be different for each classifier. This allows to
evaluate the reduction of the added error which can be attained by the linear
combination by comparing the latter term only.

We now formalize the main assumption on which our model is based. It
is analogous to the main assumption of Tumer and Ghosh model reported in
Sect. 3, although it was not explicitly phrased in this form in [8, 9].
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Assumption 1. Each realization of the random variables fk(x), k = 1, . . . , C,
leads to an estimated boundary xb between ωi and ωj in the considered interval
[x1, x2] of the feature space. No other estimated class boundary lies in [x1, x2].

As a consequence, xb is a random variable whose distribution depends on the
distribution of the fk(x)’s.

2.1 Added Error of a Single Classifier

Following the approach in [8, 9], we start our analysis by writing the estimates
fk(x) as P[ωk|x]+εk(x), where εk(x) denotes the estimation error. An estimated
boundary xb between two classes ωi and ωj is characterized by fi(xb) = fj(xb) >
fk(xb), k �= i, j. We will denote with b the offset xb−xref . As in [8,9], if b is small
enough with respect to the changes in the posteriors and in P[x], a first order
approximations of the posteriors and a zero order approximation of P[x] can be
made around the reference point xref : P[ωk|xref+b] � P[ωk|xref ]+bP′[ωk|xref ], k =
i, j, e P[xref + b] � P[xref ]. Substituting in Eq. 2 we obtain

Δeadd(xref , xb) =
P[xref ]t

2

(
2u

t
b + b2

)
, (3)

where
u = P[ωj |xref ] − P[ωi|xref ], t = P

′[ωj |xref ] − P
′[ωi|xref ] . (4)

The expected value of Δeadd(xref , xb) with respect to b is then

ΔEadd = E[Δeadd(xref , xb)] =
P[xref ]t

2

[
2u

t
βb + β2

b + σ2
b

]
, (5)

where βb and σ2
b denote the expected value and the variance of b.

It is also possible to express b as a function of the estimation errors: this allows
to rewrite Eq. 5 in a form which will be useful to compare the expected added
error of an individual classifier with the one of linearly combined classifiers. From
fi(xb) = fj(xb), rewriting fk(x), k = i, j, as P[ωk|x] + εk(x), and using the first
order approximation of the posteriors, we obtain

b =
εi(xb) − εj(xb)

t
− u

t
. (6)

Assuming as in [8, 9] that the estimation errors on different classes εi(x) and
εj(x) are uncorrelated, from Eq. 6 we obtain

βb =
βi − βj

t
− u

t
, σ2

b =
σ2

i + σ2
j

t2
, (7)

where βk and σ2
k, k = i, j, denote the expected value (named bias in [8, 9]) and

the variance of εk(xb). Substituting the above expression of βb into Eq. 5 we
obtain

ΔEadd =
P[xref ]t

2

[
−u2

t2
+

1
t2

(βi − βj)2 +
1
t2

(σ2
i + σ2

j )
]

. (8)
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The expected added error in [x1, x2] is then given by

Eadd = eadd(xref) + ΔEadd . (9)

It is easy to see that the expected added error is the sum of three terms: a
constant term eadd(xref) − P[xref ]u

2

2t , whose value depends only on the choice of
the reference point xref ; a term depending on the bias of estimation errors, and
the other on their variance.

2.2 Added Error of Linearly Combined Classifiers

Consider now a linear combination of the posteriors estimates provided by an en-
semble of N classifiers, fn

k (x), k = 1, . . . , C;n = 1, . . . , N , using positive weights
wn which sum up to 1, as in [2]:

fave
k (x) =

N∑
n=1

wnfn
k (x) = P[ωk|x] + εave

k (x) = P[ωk|x] +
N∑

n=1

wnεn
k (x) . (10)

To proceed with our analysis, we extend the assumption 1 to the estimates of
each individual classifier, and of their linear combination. Now, as in Sect. 2.1,
we rewrite the added error eave

add(xbave) in [x1, x2] as eave
add(xref) + [eave

add(xbave) −
eave
add(xref)], using the same reference point xref as in each individual classifier.

With the same approximations, assumptions and steps as in Sect. 2.1, we obtain:

bave =
εave

i (xbave) − εave
j (xbave)

t
− u

t
, (11)

while the expected value of Δeave
add(xref , xbave) is

ΔEave
add =

P[xref ]t
2

{
−u2

t2
+

1
t2

(βave
i − βave

j )2 +
1
t2

[
(σave

i )2 + (σave
j )2

]}
, (12)

where

βave
k =

N∑
n=1

wnβn
k , (σave

k )2 =
N∑

n=1

w2
n(σn

k )2 +
N∑

n=1

w2
n

∑
m�=n

ρmn
k σm

k σn
k , k = i, j ,

(13)
ρmn

k denotes the correlation coefficient between εm
k (x) and εn

k (x), and σm
k is

the standard deviation of εm
k (x). Finally, the expected added error in [x1, x2] is

Eave
add = eadd(xref) + ΔEave

add. (14)

Eqs. 14,12 show that the expected added error of the linear combiner, as the one
of individual classifiers (see Eqs. 9 and 8), is given by the same constant term
eadd(xref) − P[xref ]u

2

2t , plus a bias term and a variance term. The error reduction
attainable by the linear combination can thus be evaluated taking into account
only the bias and variance terms.
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In the next Section we will point out the different scopes of the two frame-
works in their capability of modeling the added error, and show that Tumer
and Ghosh framework is included in ours. In Sect. 4 we will then compare the
predictions about the behaviour of linear combiners which can be obtained from
the two frameworks.

3 Comparison with Tumer and Ghosh Framework

As explained in Sect. 2, Tumer and Ghosh framework differs from ours since
it evaluates the added error in an interval of the feature space containing an
ideal boundary xopt between two classes ωi and ωj , which is characterized by
P[ωi|xopt] = P[ωj |xopt] > P[ωk|xopt], k �= i, j. The main assumption of Tumer
and Ghosh framework can be phrased as follows.

Assumption 2. Each realization of the random variables fn
k (x), k = 1, . . . , C; n =

1, . . . , N , leads to an estimated boundary between ωi e ωj, in a given interval
[x1, x2] which contains an ideal boundary xopt between the same classes, both for
each individual classifier and for their linear combination. Furthermore, there
are no other estimated or ideal class boundaries in the considered interval.

This is more restrictive than assumption 1 of our framework, which does not
require the presence of such an ideal boundary, and thus allows to model the
added error only for a subset of cases which can be modeled by our framework.
Under assumption 2, the added error in [x1, x2] is given by Eq. 1. Denoting the
offset xb−xopt with b, making a first order approximation of the posteriors and a
zero order approximation of P[x] around xopt, and assuming that the estimation
errors on different classes are uncorrelated as in Sect. 2, it turns out [8, 9] that

bn =
εi(xbn) − εj(xbn)

t
, bave =

εi(xbave) − εj(xbave)
t

, (15)

while the expected added error in [x1, x2] is

En
add = P[xopt]t

2

{
1
t2 (βn

i − βn
j )2 + 1

t2

[
(σn

i )2 + (σn
j )2

]}
,

Eave
add = P[xopt]t

2

{
1
t2 (βave

i − βave
j )2 + 1

t2

[
(σave

i )2 + (σave
j )2

]}
,

(16)

where t, εave
k (x), βk and σ2

k, k = i, j, are defined exactly as in Sect. 2. It is worth
noting that the two expressions of the expected added error are the sum of a
bias and a variance term formally identical to the ones derived from our model
(see Eqs. 13 and 8 for an individual classifier, and 13, 12 for a linear combiner):
the only difference is that our model leads to a further constant additive term
due to the fact that in our model the reference point xref needs not to coincide
with an ideal boundary xopt (which could even not exist in [x1, x2]).

We now show that Tumer and Ghosh framework is included in ours, in the
sense that, under the more restrictive assumption 2, they both lead to the same
expression of the expected added error in the considered interval, provided that
the reference point xref is chosen equal to the ideal boundary xopt between ωi
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Fig. 3. True (solid lines) and estimated posteriors (dashed lines) for a three-class prob-
lem, leading to an ideal boundary xopt between ω1 and ω2, and to an estimated bound-
ary xb between ω3 and ω2. The added error corresponds to the light gray plus the
dark gray area in the left panel, while it would be erroneously evaluated by Tumer
and Ghosh framework as the gray area in the right panel (see text for a complete
explanation).

and ωj . To this aim, it is sufficient to note that in this case the term u =
P[ωj |xopt] − P[ωi|xopt] is null, since the true posteriors are equal in the ideal
boundary xopt, and the term eadd(xopt) is null as well, since, when the estimated
boundary coincides with the ideal one (xb = xopt), the added error vanishes. It
immediately follows that the expressions of b and of the expected added error
given by the two frameworks are identical.

We finally point out that there are cases in which the added error can be
correctly modeled by our framework only. This happens when assumption 1
holds while 2 does not, namely when there is no ideal boundary between ωi and
ωj in the considered interval, or equivalently when the effect of the estimation
errors on the posteriors is not a shift of an ideal class boundary. It is worth
noting that these are cases of practical interest: as pointed out in [6], in complex
pattern recognition problems it is likely that estimation errors cause different
effects besides the shift of ideal boundaries. To clear up this point, we consider
an example taken from [6] for a three-class problem, which is illustrated in Fig. 3,
left. In the considered interval there is an ideal boundary xopt between ω1 and ω2,
while estimation errors lead to a boundary xb between ω3 and ω2. Note that there
is also a point x′ such that f1(x′) = f2(x′), which however is not an estimated
boundary between ω1 and ω2. The true added error corresponds to the light
gray area in Fig. 3, left. Tumer and Ghosh framework would erroneously model
it with reference to the point x′, as the grey area in Fig. 3, right. Consider instead
xref = xopt as the reference point for our framework, for the sake of simplicity
(any other point could be used as well). Our framework correctly models the
added error as the sum of eadd(xref), namely the one corresponding to xb = xref

(the sum of the light gray and of the intermediate gray areas in Fig. 3, left), and
of Δeadd(xref , xb) (the dark gray area minus the intermediate gray area), which
results in the sum of the light and dark gray areas in Fig. 3, left.

To sum up, our model has a broader scope than the one by Tumer and Ghosh,
since it allows to model the added error under more general conditions. As a
result, one may expect that our framework gives more accurate predictions on
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the behaviour of linear combiners, which in turn could provide better guidelines
for their design. This issue is discussed in the next Section.

4 Analysis of Simple and Weighted Averaging

In [8,9] the model by Tumer and Ghosh was exploited to evaluate the reduction
of the added error attainable by the simple average combining rule (from now
on, SA) with respect to individual classifiers. Some further results were pointed
out in [2]. The main results were the following:

1. SA reduces the variance component of the expected added error by an
amount which depends on the correlation between estimation errors ρmn

k of
the different classifiers (see Eqs. 16 and 13); for negatively correlated errors,
the variance component can be reduced up to zero.

2. SA guarantees at least a bias component not greater than the maximum one
exhibited by the individual classifiers.

These results suggested in [8, 9] that the design of individual classifiers should
focus on obtaining low bias and correlation, while the variance can be reduced
by averaging classifiers.

What does the model presented in Sect. 2 add to the above results? Note
first that in our model the bias and variance components of the expected added
error, in Eqs. 8 (P[xref ]t

2 [ 1
t2 (βi − βj)2 + 1

t2 (σ2
i + σ2

j )]) and 12 (P[xref ]t
2 { 1

t2 (βave
i −

βave
j )2 + 1

t2 [(σave
i )2 + (σave

j )2]}), can be either positive or negative depending on
the sign of the term t given by Eq. 4, while t is always positive in Tumer and
Ghosh model. If t > 0, the bias and variance components of the two models
are identical, and thus the above results provided by Tumer and Ghosh model
hold also for ours. Instead, if t < 0, the bias and variance components derived
from our model are negative. This implies that the expected added error of the
SA can even be higher than the one of each individual classifier, and anyway it
can never be lower than that of the best individual classifier. Furthermore, the
reduction in the expected added error increases for increasing correlation between
the estimation errors. Therefore, in presence of different estimated boundaries
characterized by both positive and negative values of the corresponding t, the
net effect of SA will be determined by the counterbalance of the two behaviours
above. In other words, the advantage of SA over individual classifiers could be
lower than the one predicted by Tumer and Ghosh model.

A further exploitation of Tumer and Ghosh model was carried out in [2], to
compare the behaviour of the SA with that of the weighted average (from now
on, WA) combining rule. An analytical comparison was possible only under the
simplest case of unbiased and uncorrelated errors. The main theoretical results
derived in [2] can be summarized as follows:

1. SA is the optimal linear combining rule, only if the individual classifiers
exhibit the same misclassification rate.

2. WA can always perform at worst as the best classifier of the ensemble.
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3. The improvement in misclassification rate which can be attained by WA
over SA depends on the error range of the ensemble, namely on the mis-
classification rates of the best and worst individual classifiers: the broader
the error range, the higher the improvement; being equal the error range,
the improvement strongly depends on the degree of performance imbalance,
namely on the distribution of the misclassification rates of the other indi-
vidual classifiers. In particular, for classifiers exhibiting a narrow error range
(say, below 0.05), the advantage of WA over SA is quite small (say, below
0.01).

This suggested in [2] some new simple guidelines for the choice between SA
and WA in real applications. Basically, it could be worth using WA only if
the individual classifiers exhibit a broad error range (say, above 5%), unless
the weights can be estimated with high reliability; otherwise the small ideal
advantage can be canceled out by weight estimations from small and noisy data
sets. Although the assumption of unbiased and uncorrelated errors, as well as
the main assumption of Tumer and Ghosh model (being the effect of estimation
errors the shift of ideal boundaries) are likely to be violated in practice, it turned
out that the derived predictions about the behaviour of SA and WA, and thus
the validity of the above guidelines, were confirmed by experimental results on
real data sets reported in [2]. It was left as an open problem to understand
why theoretical predictions derived under assumptions which were apparently
very restrictive were confirmed on real data sets. A partial answer can be given
thanks to the new model described in this paper. By carrying out the same
analysis described in detail in [2] for the case of unbiased and uncorrelated
errors, it turns out that our model gives the same predictions above about the
behaviour of WA and SA, for the case in which t > 0. Moreover, for t < 0
only prediction 2 above changes: in this case WA performs at best (instead of
at worst) as the best individual classifier. This is thus an indication that the
predictions derived from Tumer and Ghosh model were confirmed on real data
sets since they actually hold under more general conditions. We point out that
experimental results analogous to [2] (not reported here due to space limits)
were obtained on six more real data sets taken from the UCI repository, namely
Optdigits, DNA, Ionosphere, Satellite, Satimage and Segmentation.

5 Conclusions

In this paper we presented a new theoretical framework for the analysis of the
reduction in misclassification probability which can be attained by linearly com-
bining an ensemble of classifiers which provide estimates of the a posteriori prob-
abilities. Our framework has a broader scope than the one developed in works
by Tumer and Ghosh, and includes it as a particular case. It allows to analyze
the added error around any class boundary provided by the estimated posteri-
ors, not only around boundaries which are shifted from ideal ones as in [8, 9].
This gives a more general understanding of the operation of linear combiners.
In particular, this allowed us to point out some behaviours of linear combiners
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(technically, the cases in which the term t is negative) which were not contem-
plated by Tumer and Ghosh model. Nevertheless, we found that many of the
predictions of our model, in particular the ones from which practical guidelines
for the design of linear combiners can be derived, are nearly identical to the
predictions derived from the previous model: this gives a partial explanation to
an open issue pointed out in [2], raised by the fact that theoretical prediction
derived by Tumer and Ghosh model under strict and unrealistic assumptions
turned out to be experimentally confirmed on real data sets.

To sum up, the main contribution of this paper is the development of a theo-
retical framework which allows a more general understanding of linear combiners.
We are also investigating whether the ideas behind the theoretical frameworks
considered in this work could suggest new theoretical models for other combin-
ing rules, which would be a useful step towards a more general framework for
multiple classifier systems.
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