
On the Robustness of Mobile Device Fingerprinting

Can Mobile Users Escape Modern Web-Tracking Mechanisms?

Thomas Hupperich
Ruhr-University Bochum

thomas.hupperich@rub.de

Davide Maiorca
University of Cagliari

davide.maiorca@diee.unica.it

Marc Kührer
Ruhr-University Bochum

marc.kuehrer@rub.de
Thorsten Holz

Ruhr-University Bochum
thorsten.holz@rub.de

Giorgio Giacinto
University of Cagliari

giacinto@diee.unica.it

Abstract
Client fingerprinting techniques enhance classical cookie-based user
tracking to increase the robustness of tracking techniques. A unique
identifier is created based on characteristic attributes of the client
device, and then used for deployment of personalized advertise-
ments or similar use cases. Whereas fingerprinting performs well
for highly customized devices (especially desktop computers), these
methods often lack in precision for highly standardized devices like
mobile phones.

In this paper, we show that widely used techniques do not per-
form well for mobile devices yet, but that it is possible to build
a fingerprinting system for precise recognition and identification.
We evaluate our proposed system in an online study and verify its
robustness against misclassification.

Fingerprinting of web clients is often seen as an offence to web
users’ privacy as it usually takes place without the users’ knowl-
edge, awareness, and consent. Thus, we also analyze whether it
is possible to outrun fingerprinting of mobile devices. We inves-
tigate different scenarios in which users are able to circumvent a
fingerprinting system and evade our newly created methods.

1. INTRODUCTION
Tracking is an integral technique in today’s Web and use cases

reach from session management over personalization (especially
related to advertisements) to fraud detection techniques. The “clas-
sical” approach for web tracking is based on HTTP cookies, where
the web server stores some information on the client side in a per-
sistent way that outlasts the current browsing session. Furthermore,
other kinds of (transient or persistent) cookies are possible; Flash
content or HTML5 storage are just two of many examples for tech-
nical approaches to tracking. Such tracking induces concerns re-
lated to the privacy of web users, especially since tracking usually
takes place without the users’ knowledge, awareness, and consent.
Thus, users are inclined to delete cookies or perform other actions
to avoid tracking.

To complement these state-based tracking techniques, stateless
tracking (also known as fingerprinting) has thus become an in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07 - 11, 2015, Los Angeles, CA, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818032

creasingly important technique. In recent years, many features and
methods have been proposed [11,15,19,21] that facilitate the gener-
ation of fingerprints for device identification. The usual procedure
works in two steps: first, characteristic attributes of a system are
collected. In the second step, a unique identifier is derived from
this input, and the resulting identifier is then used to recognize this
single system. The attributes yield descriptive information about
the system, e. g., specifications or customizations, and give clues
about the kind of usage and configurations. The combination of
such attributes—also called features—is desired to be as unique as
possible, while weights can be leveraged to express the attributes’
importance. The term “fingerprint” describes the set of attribute
values as well as the resulting identifier for a client device.

Recent studies demonstrate that fingerprinting works well for
highly customized devices (especially desktop computers), while
lacking precision for highly standardized devices like mobile phones
or tablets [11, 21]. This is due to the fact that fingerprinting relies
on characteristic features that can be either customized by a user
(e.g., installed fonts) or depend on the actual device (e.g., screen
resolution or color depth). Mobile phones lack such customiza-
tions and thus tracking of such devices is still an open problem in
practice. Due to the fact that mobile devices (especially Android-
based mobile phones) significantly gained market share in the last
years, tracking of such devices is evermore relevant.

In this paper, we focus on this problem and examine it in detail.
In a first step, we perform a comprehensive analysis of tracking
libraries used in the wild. More specifically, we study nine com-
mercial tracking libraries and analyze the fingerprinting techniques
used by these commercial vendors. We find a wide variety of po-
tential tracking methods and study the information gain provided
by each feature. This analysis is based on a real-world data set
consisting of data collected from more than 15.000 client systems.
The main finding is that the currently used features do not perform
well for mobile devices, especially due to the fact that such devices
cannot be customized easily as compared to desktop computers.
As such, we confirm the observation [21] that tracking of mobile
devices is a hard problem in practice.

In the second step, we propose several features that tracking sys-
tems could leverage to fingerprint mobile devices. We study four
different categories of features (i.e., browser, system, hardware,
and behavioral attributes) and discuss how they can be utilized for
tracking. We implemented the proposed features, built a prototype
of a fingerprinting system and evaluate its effectiveness with 724
mobile users who took part in our experiments over a duration of
four months.

As a third step, we study the robustness of our algorithm against
evasion attacks, i.e., we study how a user could influence the fea-
tures by changing device attributes to bypass our tracking system.

191

Based on a discussion of the changeability of features, we evaluate
four different evasion scenarios (e.g., using a second browser or a
proxy connection). We find that users can evade fingerprinting, but
that it is not as easy as one would expect at a first glance.

In summary, we make the following contributions:
• We provide a comprehensive analysis of existing tracking

techniques used by (commercial) tracking companies and study
the performance of such techniques for mobiles devices in a
field study.
• We discuss how tracking for mobile devices can be improved.

To this extent, we propose a fingerprinting system based on
known and new features that result from a systematic study
of browser, system, hardware, and behavioral attributes.
• We implemented the proposed system and evaluate the pro-

totype in an online study with 724 participants, of which 459
participants accessed the experiment more than once over a
duration of 4 months.
• We study evasion techniques against fingerprinting systems,

i.e., we analyze how a user can bypass the tracking system
by changing (some of) the features of her mobile device. We
study the robustness of our proposed approach by evaluating
evasion attacks under four different scenarios.

2. EXISTING TECHNIQUES
First, we review the basic approach of existing techniques and

then dive into technical details of state-of-the-art fingerprinting meth-
ods and their effectiveness.

To investigate which features and fingerprinting techniques are
used by (commercial) tracking libraries, we first collected a rep-
resentative set of commonly used libraries. We analyzed popular
websites using the Alexa ranking [3] and obtained a set of com-
monly used tracking libraries. Such JavaScript libraries leverage
different features to implement device tracking and fingerprinting
methods. We collected and analyzed the code of nine tracking li-
braries, and found that they leverage many different features. This
study can be found in detail in our technical report and presents an
overview of commonly used features and attributes for client fin-
gerprinting [14]. We focus on the effectiveness of these features
and possible fingerprinting evasion scenarios in this paper.

In general, we observe that attributes can be easily obtained from
the Browser Object Model (BOM) without performing sophisti-
cated calculations. Table 1 outlines the extracted features that are
used for generating fingerprints and storing unique identifiers. Ad-
ditionally, we find that all libraries collect information about these
characteristics: i) user agent, ii) display properties, iii) timezone
setting, and iv) CPU & OS versions.

Intuitively, many of the features that are implemented in the ex-
amined libraries do not work for mobile devices (e. g., Flash or
Silverlight cookies). We therefore aim to study whether common
fingerprint methods for desktop computers might also be applicable
for mobile devices. To do so, we analyzed a set of real-world data
consisting of values aggregated using common fingerprinting meth-
ods by an advertisement service provider. This data set (collected
in June and July 2014) includes features collected from over 15,000
client systems. In total, 211,652 feature values were obtained from
desktop computers and mobile devices. By reasons of privacy, the
data was anonymized and freed from personal identifiers.

We divided the data into two subsets, by filtering the user-agent
string for desktop and mobile device identifiers. The first subset
SMobile was extracted by filtering the complete data for mobile
device specifiers. The second subset SDesktop consists of data of
desktop computers and features the same size as SMobile. Each
subset includes over 2,100 representative devices with about 35,000
feature values. A full description of all features can be found in our

technical report [14]. These features contain many HTTP header
fields and aim especially for fingerprinting desktop computers. In
the following we refer to them as desktop feature set.

We measured the information gain of features in each set with re-
spect to the classes instrumenting the Kullback-Leibler divergence
(KLD) [13] to obtain an information score for every feature. A
higher score represents a higher entropy and hence more worth of
information. The scores do not provide percentage values about
detection, but allow us to compare the average information content
of each feature in both subsets. The features ranked according to
their information gain are shown in Table 2.

Table 2: KLD results for SDesktop and SMobile

SDesktop SMobile

Score Feature Score Feature

6.784 plugins 4.551 accept language
6.730 mimetypes 4.533 user agent
5.920 user agent 3.601 language
5.865 accept language 2.119 timezone
5.213 plugin versions 1.843 screen y
4.419 fonts 1.492 canvas
4.185 language 1.284 screen x
2.952 canvas 1.106 mimetypes
2.755 screen x 0.939 accept encoding
2.426 screen y 0.605 plugins
2.095 timezone 0.184 accept
1.750 accept encoding 0.072 color depth
1.118 accept 0.058 plugin versions
0.700 color depth 0.044 fonts

Note that almost every feature provides less information when
applied to mobile devices. The fact that the scores in SMobile are
generally lower compared to SDesktop is a first hint that features
which perform well for fingerprinting desktop computers may not
achieve the same precision when applied to mobile devices.

The most descriptive features for desktop computers in our dataset
are browser plugins and mimetypes. These attributes are standard-
ized for most mobile devices and usually cannot be changed by the
user. Due to this lack of customization ability, these two features
have a low information score for mobile devices. However, the
user-agent seems to provide valuable information for both desktop
computers and mobile devices. The score is, though, lower for the
mobile subset, meaning that a classification by the user-agent for
mobile devices would be less precise than the one for desktops.

The high standardization of mobile devices results in less diver-
sity of attributes like fonts, screen size and color depth. In addi-
tion, there are only few possibilities to customize mobile devices:
Standard browsers often do not support plugins natively, and the
installation of non-standard browsers is rare.

After determining the descriptive power of features we have seen
in the wild, we investigate their ability for device recognition in the
following ways. For ground truth of the classification, we use a
device ID which is a hash value stored in a cookie.

To analyze the two subsets from our data set, we used a C4.5 de-
cision tree model. The evaluation showed that 91.45% of SDesktop

were correctly classified using the desktop feature set. In contrast,
the model was able to correctly classify only 37.16% of SMobile us-
ing the same feature set. The decrease in correct classification has
already been foreshadowed by the information gain analysis. The
low classification rate for the subset of mobile devices substanti-
ates our claim that features which perform well for fingerprinting
desktop computers are not necessarily appropriate for fingerprint-
ing mobile devices as well.

3. FINGERPRINTING MOBILE DEVICES
As shown in the previous section, existing fingerprinting tech-

niques lack precision for mobile devices. We now propose a fea-

192

Table 1: Tracking libraries and the applied fingerprinting techniques

AFK Media Analytics Engine BlueCava Device Ident Inside Graph Iovation ITT Max-Mind
Threat-
Metrix

Cookies - HTTP HTTP HTTP HTTP HTTP HTTP - -
- - Flash - - Flash - - -

- -
ActiveX/

Silverlight
- -

ActiveX/
Silverlight

ActiveX/
Silverlight

-
ActiveX/

Silverlight
- - - PNG - - PNG - -

HTTP Mimetypes Mimetypes Mimetypes Mimetypes - - Mimetypes Mimetypes Mimetypes
- - Referrer - - Referrer Referrer - Referrer
- - XFF - - - - - -

Storage - - Local Local - Local Local - Local
- - - - - WebSQL - - -
- - userData - - - userData - -
- - - - - - Caching - -

BOM Fonts Fonts Fonts - Fonts Fonts Fonts Fonts Fonts
- - Language Language - Language Language Language Language

Plugins Plugins Plugins Plugins - Plugins Plugins Plugins Plugins
- - Root-URL - Root-URL Root-URL Root-URL Root-URL Root-URL
- - - Canvas - - Canvas - Canvas

- -
Integer

precision
- - - - - -

ture set that is particularly applicable for fingerprinting mobile de-
vices. This feature set consists of properties and attributes that have
been aggregated by instrumenting the browser environment using
JavaScript. We aim to study the effectiveness of the feature set for
mobile devices, even if not all of these features may be exclusively
available. We divide the characteristics of a mobile device into four
categories and discuss each in the following.

3.1 Browser Attributes
Browser applications already provide various information with

respect to the systems’ environment. We discovered that common
mobile web browsers—Android’s native browser, Google Chrome,
Firefox, IE mobile, Opera, Opera Mini and Safari—reveal infor-
mation about the browser version, the OS, and the underlying ren-
dering engine. Furthermore, Android’s native browser, Chrome
(the two most frequently used browsers on Android devices [4]),
and Safari also provide the device manufacturer, model, and the
browser’s language. IE mobile and Opera allow the detection of
device manufacturer and model as well.

Additionally, we obtain further browser attributes such as the
“Do-Not-Track” (DNT) option, the capability of storing cookies,
using Local Storage, and Java. We can also detect whether the
browser blocks popups by default and—if newer web technologies
are supported—the standard search engine.

Whereas on desktop computers features like supported mime-
types and installed plugins change with the installation or deinstal-
lation of software, on mobile devices changes to these features are
very uncommon and generally imprecise (see Section 2). We tried
to determine if specific protocol handlers are registered with the
browser (e.g., the one for Skype), thus revealing if specific applica-
tions are installed. However, this is a noisy procedure and interferes
with user operations as a message will pop up asking for the appli-
cation to handle this protocol. In any case, the user will be alarmed.
As this is not in our interest, such features are out of scope.

To build a ground truth for evaluation, we set device IDs for
newly occurring devices that are either contained in the local stor-
age, or stored as cookie. If a device is already flagged by such an
ID, the device is identified as re-visitor. We found the File API of
HTML5 to be too noisy for storing such IDs as the API requires
user permission to store this data.

3.2 System Attributes
Due to high standardization of mobile browsers, it cannot be ex-

pected to distinguish devices on the basis of browser information
only. For this reason, we aim to gather more information about
the device system itself. However, we still use the browser in or-
der to obtain information, and we are therefore subjected to certain
restrictions due to sandboxing and limited permissions. Further-
more, we want to employ low-noise fingerprinting, i.e., we do not
install any app or perform any activities that raises a user’s sus-
picion. With these restrictions in mind, we are able to obtain the
following system-wide information.

From the navigator object, the screen width and height, and the
display’s colordepth are extracted. Additionally, the OS name and
version that are provided by the navigator are useful for our pur-
poses. Most current versions of common browsers also yield infor-
mation about the current connection type. We obtain information
when the device is in a WiFi network or using a mobile connection
like 3G or 4G.

Besides the connection type, we gather information about the en-
vironment of the mobile device. More specifically, we obtain the
device’s timezone by calculating the time offset to 13 different time
points and building a hash of the differences. We also store the de-
vice’s IP address and the hostname of the network node, e.g., a
WiFi router. To have a more general view, the hostname is masked
with a wildcard which can be used as additional feature. Host-
names often look like ip-xxx-xxx-xxx-xxx.web.provider.com, con-
sisting of the device’s IP address and the network provider’s (sub)-
domain. The hostname wildcard in this example would be *.web.
provider.com, which allows a grouping of devices based on the net-
work they are logged in. We use MaxMind GeoIP2 [17] to de-
termine geographical information about the current location of the
device.

We also implemented an Apple AirPlay detector. AirPlay re-
ceivers listen for local network devices to potentially stream media
content. We implemented a function that requests to stream an au-
dio file if a mobile device is connected to WiFi and has already been
identified as running iOS. This makes the AirPlay protocol return
a list of available devices able to play the file. After receiving this
list, we abort and withdraw the streaming request. The list of Air-
Play enabled network devices may provide information about the
environment (e.g., if a user owns an AppleTV).

Additional system specific attributes like active widgets, enabled/
disabled phone encryption or developer options were not accessible
through any web browser. Certainly, it might be possible to check
these options when running an app such as Ad-Trackers. However,

193

in our scenario we are restricted to browser techniques. Addition-
ally, we considered measuring the device’s CPU and memory as
well as the network-based and GPS-based location. We also de-
veloped a JavaScript-based network scanner that determines the
device’s local IP address next to other network devices such as
routers. However, as we do not want to arouse suspicion, we de-
cided to omit such attributes. Scanning the local network, or testing
CPU and memory would result in a high load and performance loss,
and determining the GPS-based location usually leads to a popup
asking the user for access permission.

3.3 Hardware Attributes
The aforementioned restrictions of browser permissions lead to

the fact that barely any hardware meta-data can be accessed. As
such, we are not capable of obtaining identifiers like serial numbers
of specific hardware elements, e.g., the camera module. Neverthe-
less, we aggregate the following three attributes in the browser con-
text: the device’s platform, the number of the device’s touchpoints,
and the availability of a vibration motor.

Additionally, we can access a device’s gyroscope and accelerom-
eters via JavaScript, which is commonly used in browser-based
games. Prior work has shown that these sensors have imperfec-
tions that vary among different devices [10]. To determine these
imperfections, we implemented a function to gather accelerometer
and gyroscope data, and used such data as another descriptive fea-
ture. Please note that we do not have information about the users’
current activities, and the device may be moving while gathering
this data. To avoid distortions, we filter out these movements based
on the amplitude of acceleration. Other hardware information such
as the availability of a second SIM card slot or sensor specifications
are not available for the browser.

3.4 Behavioral Attributes
We also implemented three functions to gather more detailed in-

formation about a device’s user and her behavior. First, as we aimed
to learn about the user’s browsing habits, we implemented a timing
attack technique for history stealing [22]. The rendering of visited
hyperlinks differs from the rendering of unvisited links in various
browsers. This fact is used to determine whether a user has visited
specific websites by measuring the rendering time of specific links
using the JavaScript function requestAnimationFrame. In
our experiments, we decided to check if a user visited the websites
of Amazon, Ebay, Facebook, Google, Twitter, and Zalando—each
with different top level domains— to also gain information about
the user’s localization. We chose these websites because we can
expect them to have a large user base, and hence we can see a fair
chance for a random Internet user to be logged in at one or more
of them. As a limitation of this feature, every website is defined as
unvisited after a user clears her browser history.

Second, we query popular websites from the user’s browser for
objects that are only accessible for logged-in users, e.g., a specific
image. More precisely, a URL is prepared so that a logged-in user
gets redirected to a specific content, whereas the website’s login
screen will show for a non logged-in user. This URL is called in the
background. If it is loaded correctly, we can assume that the user
is logged-in, whereas she is not if an error occurs. This method
can be applied for several popular websites, although the URLs
are slightly differently built for each site. Additionally, we load an
image which is publicly accessible to detect text-based browsing.
Hence, if a user disabled image loading completely, we do not clas-
sify her the same as a user who is not logged-in to any of the tested
websites.

Third, we implemented a function to measure the user’s typing
speed. As such, a text field (e.g., a CAPTCHA) is placed on the
website, which can then be monitored for user input. Once the user

starts typing, a timer is triggered that stops after the user did not
strike a key on the keyboard for a certain time. The average num-
ber of letters per second is then calculated and used as an attribute
for user behavior fingerprinting. As the typing speed can vary for
even one single user, this is not meant to be a single identifier for a
person. However, in combination with the other features, the typing
speed might improve our classification.

3.5 Formalizing the Approach
In summary, our feature set for fingerprinting mobile devices

consists of several attributes of the device’s browser, system, hard-
ware, and a small amount of user behavior. Our aim is to develop a
system that, basing on the features previously described, is able to
perform two operations:
• Recognizing new devices, i.e., devices that have never visited

our service before.
• If a device is not new, recognizing and associating it to a

device that has already visited our service.
We formalize this problem as an iterative algorithm, where each

iteration is related to a device connecting to the service:
For each iteration i of the algorithm, we define a set of known

devices: Ki = {k1, k2...kn}, n, i ∈ N, where n is the number of
devices that are already known by the system at the current iteration
step, and i is the iteration index.

Then, we define a set of feature vectors:
F i = {Ai

1, A
i
2...A

i
n}, n, i ∈ N, where An is a generic set con-

taining the feature vectors associated to the accesses made by the
generic device kn at the current iteration.

This can be expressed by:
Ai
n = {fn1, fn2, ...fna}, a, i, n ∈ N, where a is the number of

accesses made by the device kn at the current iteration.
The generic feature vector fna is then defined by:

fna = {mna1, mna2...mnad}, n, a, d ∈ N, where d is the number
of features we described above.

In this formulation, the following is also valid, i. e., each device
k is associated to one feature vector set A: Ki → F i

For each device ku → Au that visits our service, we initially
suppose this condition: Au = {fu}, where fu is the generic feature
vector associated to an input device. Under this, we have to find
the known feature vector fmin ∈ Ai

min that belongs to the known
device kmin, and that is most similar to fu. This vector is given by
this formulation:

fmin = argmin
f∈Ai,Ai∈F i

D(f, fu)

where D is a dissimilarity function among feature vectors, i.e., a
function that measures how much two feature vectors differ to each
other.

Furthermore, let δ be a dissimilarity threshold, we define:

Ki ∩ ku =

{
kmin : D(fmin, fu) ≤ δ

∅ : D(fmin, fu) > δ

The first condition means that if the dissimilarity between the
feature vector fu and fmin is lower than the threshold δ, then
ku is already known by the system and corresponds to the device
kmin → Ai

min. This also means that the actual set of devices does
not change in the next iteration, thus obtaining this: Ki+1 = Ki.
The corresponding set of feature vectors Ai

min must be updated
with the latest, recognized, access:

Ai+1
min = Ai

min ∪ {fu} and F i+1 = F i ∪ {Ai+1
min}

The second step is recognizing the device ku, depending on the
results of step 1. In particular, the second condition means that if
the dissimilarity between the feature vector fu and fmin is higher
than the threshold δ, then ku → Au is defined as unknown.

Because of that, ku = kn+1, as it is a completely new device that
must be added to the known devices list, and therefore we obtain

194

a new set of devices Ki+1 = Ki ∪ {kn+1}. Consequently, we
define a new set of known feature vectors for the next iteration:
F i+1 = F i ∪ {An+1}.

The iteration index i is increased by one so that the system will
be ready for the next iteration.

4. EVALUATION
We implemented the features presented in the previous section,

and built a fingerprinting system based on the proposed approach.
To gather real-world data, we set up an online survey that can be
visited by any Internet user to check whether her mobile device can
be tracked using our fingerprinting methods. Most features (esp.
the browser attributes) are gathered via GET and POST requests,
while we leverage callbacks for asynchronous features. More pre-
cisely, we created a PHP parser to catch the return values of these
callbacks. This is necessary for accessing the browsing history,
fingerprinting the accelerometer and measuring the typing speed.
Gathering this information takes more time than querying naviga-
tor objects. The measurement of typing speed has been obtained by
including a text field where the user has to type two words that are
shown in a CAPTCHA. In total, 45 features of the previously ex-
plained categories browser, system, hardware and behaviour were
collected. Such features are listed in Table 3.

For the following experiments, the data was assembled by our
online survey described above. We spread the link to our online ser-
vice via three different mailing lists, addressing university students,
IT security researchers and persons without any IT expertise. In to-
tal, almost 900 users participated in this study of which 724 were
using a mobile device like smartphone or tablet. Of these mobile
users, 459 accessed the test more than once over a duration of four
months. These re-visitors who participated at least twice are recog-
nized by a cookie ID and a local storage ID that serve as a ground
truth for our evaluation. This choice is aimed to correctly evaluate
the capabilities of the system to recognize devices that have visited
our service, and to detect previously unseen devices.

The features used for fingerprinting are of different data types
including integers, floats, hashes, bits, strings and plain texts. An
exemplary list of these features, their data types and a real-world
value is presented in Table 3. Please note, that the identifier used
as ground truth (the ID stored in a cookie and the local storage)
contains random characters as well as a time-based component to
avoid collisions of identifiers. There may be an information over-
lap between single features, e. g., operation system and is
_Android, which seems redundant but enables swift analyses and
hence faster results and insights. During the machine learning pro-
cess, these redundancies are eliminated.

As first data operation, we performed an encoding for non-nume-
rical features. By this procedure, a number will be assigned to every
unique value for all features so that every feature occurrence can
be represented by a numerical value enabling fast comparisons in
further analyses.

The majority of devices—about 64 %—are Android (mostly ver-
sion 4.4) systems on ARM platforms, followed by iPhones with
about 27 % (mostly iOS 7.1). These two systems and architectures
are not only the biggest group in our test but cover the main market
share of mobile devices in the world. We found Windows phones
and Blackberry devices to be a minority in our survey. Detailed
information about the distribution of features can be found in [14].

4.1 Feature Distribution
Device fingerprinting will benefit from features with high diver-

sity among the devices, whereas features with a small distribution
of values are not meaningful for recognizing devices. We now pro-
vide insight into the distribution of the features by commenting on

Table 3: Feature Data Types and Example Values
Feature Type Example

devicefingerprint string 4812169833755445458
revisitor bit 1
ismobile bit 1

cookie_id string
QoSQIymCwjg0augzs
D41-1415043670.767

localstorage_id string
rQG4fVJaDBNFtOyKd

CL1-1415011415.67

mimetypes text
[{"n":"video/3gpp2","d":"3GPP2

media","f":"3g2,3gp2"}, ...]
mimetype_hash hash b96eebf2fd3fff0e165d77e75474ffaf

plugins text
[{"n":"Shockwave Flash","d":

"Shockwave Flash 11.1 r115",...}]
plugins_hash hash 4e23a836cea77cf4af09affff2b64a75
plugins_num int 6
canvas_hash hash ea907f4cd06cf0f310d7acf62f2ffff6
useragent text Mozilla/5.0 (...)
vendor text Google Inc.
productsub text 20030107
is_chrome bit 0
popup_blocker bit 1
navigatorlanguage text en-en
filesystem_access bit 1
cookies_enabled bit 1
dnt_enabled bit 0
java_enabled bit 0
loginstatus bitstring 10111
history bitstring 1000100000
screen_height int 960
screen_width int 600
display_colordepth int 32
display_orientation text landscape
platform text Linux armv7l
operation_system text iOS 7.1
is_Android bit 0
is_iOS bit 1
touchpoints int 5
has_vibration bit 1
airplay_ref bit 1
typingspeed int 229
accelerometer key float 938.143359751
connection text wifi
hostname text ip-xx-xx-xx-xxx.web.provider.com
hostname_wildcard text *.web.provider.com
timezone_id int 662525310
ipaddress string xx.xxx.xx.xxx
country text Germany
city text Bochum

the most representative ones. For a detailed analysis of feature dis-
tribution, we kindly refer to our technical report [14].

The number of distinct values of a feature is not necessarily
related to their importance. For instance, if a few devices had
the “Do-Not-Track” option enabled, such devices could be well
grouped, even if this feature only allows two distinct values. Nev-
ertheless, we find features with many distinct values such as ac-
celerometer benchmarks or user agent to be of high relevance to
distinguish devices.

We define a feature as volatile if, even for the same device, such
feature could be characterized by multiple values. This volatility
can occur for attributes that change due to environment, events, or
actions. For example, the accelerometer data provides very precise
float values of a devices’ sensors, which results in slightly different
values for the same device. Different environments—a user may be
in an accelerating bus once and sit still in a room another time—
may cause this difference of data. That is why such values need to
be grouped, or in some way condensed, to be a useful feature.

Nevertheless, device recognition becomes easier, as more data
about it is obtained. The hostname attribute exemplifies this situa-
tion: If a user re-visited our experiment with two different connec-
tions, e.g., wifi and mobile network, both network node hostnames
will be registered with this device. Recognizing the device when
using one of these known hostnames will be easier. Changing the
mobile cell is an event that also affects this feature. Furthermore,

195

the devices’ network hostname is often used as a native identifier
for network providers. Hence, we are able to divide the mass of
web users into groups based on their network-based location or at
least their ISP. Please note, that volatile features have to be treated
carefully. While some features need to be condensed reasonably
(like the accelerometer data), other features provide more and more
information with every change (like the hostname).

The number of IDs stored in cookies and local storage is also
higher than the number of re-visitors. This can be explained by the
action of deleting cookies. If a user deleted cookies or local storage
after taking our test, and then re-visits the website, a new ID will be
generated and set. The fact that there are less cookies than overall
participants indicates that not everybody deleted their cookies and
local storage afterwards.

We found typing speed and browsing history to have different
values per user by trend, which makes them very discriminative for
a device’s user as they stay the same for the revisitors of our on-
line test, even when cookies and local storage are cleared. Whereas
accelerometer benchmarks may vary even for the same device, the
browsing history of a person stays the same until it is deleted manu-
ally. We expected the login status to act similar for the same reason,
but it turns out that only a minority of users use the browser to login
to services which provide an alternative app. Users tend to use spe-
cialized apps (e. g. for Facebook or Twitter) instead of their mobile
browser for these services.

To have a ground truth, we only take revisitors into account be-
cause our aim is to show the capabilities of the selected features
at recognizing known devices without relying on cookies or other
unique identifier. The recognition of visits from known devices is
carried out by resorting to the “nearest neighbor” approach. To
uniquely identify each device, we computed a hash value from the
feature values associated to each device. Furthermore, we encoded
every occurred value of all features that are naturally not numerical
to accelerate comparison operations.

4.2 Recognition of Mobile Devices
In this section, we describe our implementation of a system for

recognizing mobile devices realizing the formalism and features
described in Section 3. We also present the experiments conducted
to assess the system’s performance and the dataset.

Implementation. To recognize mobile devices by using the fea-
tures described in Section 3, we developed a system that complies
with the following properties: First, the characteristics described in
Section 3 are used as features, which will be properly preprocessed
to perform an easier computation of the dissimilarity function. Sec-
ond, the system applies a nearest-neighbor matching approach (es-
sentially a 1-NN) to perform the detection of known and unknown
devices. This choice is related to the matching-nature of the prob-
lem, for which this classifier exhibits good performances. More
precisely, our approach resorts to the dissimilarity function D in
order to extract the closest points to the input feature vector fu in
the feature space. We define D among two feature vectors f1 and
f2 in this way:

D(f1, f2) = (w · c(f1, f2)) /
d∑

i=0

wi

with d as number of features, and w = {w1, w2, ...wd} represents
the feature weight vector that is calculated by means of its infor-
mation gain IG. Thus, for each mi-feature, we calculate its weight
as follows: wi = IGi = H(D) − H(D|mi), where H(D) and
H(D|mi) are the entropy values for a specific device (consider-
ing all its accesses) before and after observing the mi-feature. We
also define c(f1, f2) = {c1, c2, ...cd} as a vector whose generic

component ci is calculated as follows:

ci =

{
0 : f1i = f2i

1 : Otherwise

As all the features in f1 and f2 are encoded as numbers, they con-
tribute to the distance only if they have different values. As de-
scribed in Section 3.5, the system determines the feature vector
fmin with the lowest distance D from fu. If D(fu, fmin) < δ,
the devices described by fu and fmin will be matched. Otherwise,
the input feature vector fu will be associated to a new device and
added to the system database.

Experimental Settings. We performed an experiment in which
our system was designed to detect unknown devices, and to match
at the same time known devices to the correct ones. We run such
experiment under two possible scenarios:

1. Single-Iteration mode: In this scenario, we suppose the web-
site has already been visited by a number of devices. The goal is
recognizing if new devices have visited the system without updat-
ing its list of known devices. This is done to verify how many new
devices could be correctly detected by the system during a single
iteration. At the same time, the system must also be able of recog-
nizing multiple accesses of the same device.

2. Multiple Iteration mode: In this scenario, the visits of each
device are considered one after the other, and they are simulated
at different times. After each iteration, the list of known devices
is updated by adding the features related to the new visit. This
procedure completely reproduces the algorithm that we described
in the previous section.

We believe that these two scenarios are representative of typical
real-world situations, and can give a good overview of the general
performances of our system.

4.3 Single-Iteration Experiment
In the first experiment, we evaluated the matching properties of

our system when a database of known devices that visited the sys-
tem is built beforehand. For each device, the features related to
different visits are stored. The aims of this experiment are the fol-
lowing.

First, detecting known devices, i.e., finding in the database the
device that correctly associates to the input of our system. We rep-
resent this case with the term match. Second, detecting mismatch-
ings, i.e., successfully performing two operations: a) correctly dis-
tinguishing a never-seen device from all the ones included in the
database; b) correctly recognizing all the devices in the database
that are different to the input of our system. We represent this
case with the term reject. The choice of the terms match and re-
ject comes from the similarity of this problem to the ones found
in biometrics. In a typical biometrics setting, the system should
be able to authenticate (match) or refuse (reject) the user that tries
to access to its system. We believe that such terminology can be
useful in the scenario at hand.

In this first experiment, we split our dataset into three pairs. Each
pair is composed by a reference set and a test set, respectively
composed by 206 accesses. Using multiple pairs of reference and
test sets reduces the possibilities that specific performances are ob-
tained because of a lucky/unlucky reference-test division. We then
extracted the feature weights with a ten-fold cross validation calcu-
lated on the reference set. Finally, given each reference-test pair,
we verified the performances of our system on the corresponding
test set. Such assessment has been repeated by considering differ-
ent scenarios: a) all features are used for the detection; b) the most
discriminant features (i.e., features with the highest weights) are
progressively removed from the feature set. This evaluation is of
interest, in particular when important information such as cookies

196

or IP address is removed. Figure 1 shows the ROC (Receiver Op-
erating Characteristic) plot that measures under multiple scenarios
the average performances of the system on the three reference-test
splits. On the y axis we report the amount of correctly matched de-
vices, whilst on the x axis we report the errors in rejecting devices.
Each point of the ROC curve corresponds to a value of the thresh-
old δ, and the optimal threshold is given by the point that is closer
to the upper-left corner of the plot.

Figure 1: Average ROC performance chart for the single-
iteration experiment.

From the obtained plot, we observe that the system has excellent
performances at detecting new devices and at recognizing already
seen ones. Performances do not change much when features like
cookies, hostnames or IP addresses are excluded from the feature
set. This is because weights are distributed on the features in a way
that no feature is completely dominant on each other. For the same
reason, when all features are considered (including cookies), the
system does not have 100% detection rate with zero false positives.
Of course, this figure would change by increasing the weight as-
signed to cookies. However, this would compromise the general
performances when such dominant features are not considered.

4.4 Multi-Iteration Experiment
The aims of this experiment are the same of the previous one,

but in this case we assess the performances of the system by strictly
following the algorithm that we proposed in Section 3. We there-
fore simulate that all the devices in the databse visit our service
one after the other. The order of the visits is strictly random. At
the first iteration, the reference set contains just one sample, and it
will dynamically increase its size after each visit. In this scenario,
the system has no supervised knowledge, and will progressively
adapt itself to recognize new devices. Of course, this means that
the system might exhibit more matching errors, especially when
the size of the reference set is particularly small. Figure 2 shows
the ROC curve by considering the same scenarios as those of the
Single-Iteration Experiment. As the reference set dynamically in-
creases after each visit, every score used to compute the ROC has
been calculated on different reference sets.

From the attained results, we observe that the performance of our
system is significantly worse than the previous experiment. How-
ever, this was predictable as this experiment starts with only one
sample. Errors in matching known devices and failures in recog-
nizing new devices will affect the performances. However, even
in these conditions the system provides good performances with a
decent number of false positives.

In this case, we also observe that the dependency of the perfor-
mances on the most discriminant features is much more evident.

Figure 2: Average ROC performance chart for the multi-
iteration experiment.

In fact, without considering the IP address or the local storage
ID, system performances exhibit a drastic decrease. We speculate
that highly discriminant features are important for a more accurate
matching with few reference samples. Figure 2 also confirms the
trend shown in Figure 1: devices can be tracked, to a certain extent,
even without resorting to cookies.

5. ANALYSIS OF EVASION RESISTANCE
A crucial aspect of our evaluation is the robustness of our system

against evasion attacks. In our setting, an evasion attack can be de-
fined as an attempt by a user to avoid her device being recognized
by a service she visits more than once. The actions carried out by
the user to evade detection affect elements such as system applica-
tions (e.g., browsers) or connection properties, and features values
related to such elements will be accordingly changed.

5.1 Changeability of Features
To shed light on the robustness of the proposed fingerprinting

technique, we analyze the degree of changeability of the employed
features. Whereas it might not be challenging for an experienced
user to change some of these features, other features cannot be eas-
ily changed. For example, there are features that change according
to the context (e. g., the timezone changes when the user is travel-
ing), but there are also immutable ones (e. g. hardware attributes).

Among the set of features whose values can be directly changed
by the user, we include browser-based features and other features
related to user’s behavior. The following list includes all the fea-
tures that the user can change with different degrees of difficulty:

• popup blocker active
• DNT option enabled
• Java availability
• cookies enabled
• autofill forms
• filesystem access
• cookie ID
• local storage ID
• login status

• browsing history
• navigator language
• user agent
• display orientation
• AirPlay availability
• typing speed
• browser plugins
• accelerometer data

There are several easy-to-switch binary features. For example,
the following elements contained in the set are linked to user op-
tions: Java, popup blocking, “Do-Not-Track”, autofill forms, filesys-
tem access, cookies, and local storage. Although the user can block
cookies and local storage by websites, this may result in limiting
the functionality of the visited websites. For example, most online
shops use cookies and/or local storage to track the items visualized

197

by the user during her visits. Thus, a user would probably not want
to completely disable these functionality, but might regularly delete
cookies and local storage data.

Additionally, the user can influence the features related to the
login status and history by regularly logging out from websites that
require authentication and regularly clearing the browser history.
If an advanced user is aware that these features are gathered for
fingerprinting purposes, she could easily create fake accounts to
alternately log in and out, in order to induce as much randomness
as possible. The same applies to the history feature.

To alter the navigator’s appearance, a user could easily set a dif-
ferent language. A user is also free to use a different browser that
changes the navigator user agent completely. This would also affect
the canvas fingerprinting method. However, this action requires the
installation of new software and not just changing a browser’s con-
figuration. On the other hand, if the reference set for a given device
contains samples related to visits by different browsers, a browser
change will not affect the matching performances.

Some browser-independent attributes can also be influenced by
the user: For example, display orientation can be easily changed,
but as orientation may affect the usability of certain websites, it
cannot be changed arbitrarily. The features related to the availabil-
ity of Apple AirPlay can be influenced by deactivating the stream-
ing service by default and enabling it when used. Anyway, heavily
resorting to this procedure can affect the usability of the system.
Typing speed and accelerometer measurements can be tampered
with, too. If a user is aware that the typing speed is measured, it
is easy to manually add randomness (e.g., by typing slower than
usual). To distort accelerometer data, the user could unpredictably
move the device the whole time. Besides the user’s direct sphere
of influence, the following features are likely to change on certain
events:
• IP address
• hostname
• timezone

• country
• city
• connection type

With the exception of the connection type, these features depend
on the location of the device. A mobile device’s IP address is most
likely to be volatile, as it changes according to network providers’
rules. The hostname and its corresponding wildcard are based on
the IP address. Timezone, country, and city are determined with
the help of the device’s IP. Consequently, if a user spoofs the de-
vice’s location, these features will change. Using a proxy (e. g.,
an anonymization service) invalidates all location-based attributes.
The connection type might be changed by the user as well, for ex-
ample by alternatively using public WiFi services, and mobile data
connections.

Whereas some features can be directly influenced by the user, or
can be changed according to the environment, others are (almost)
completely immutable for a user in a normal setting:

• platform
• operating system
• vendor
• productsub
• vibration availability

• screen height
• screen width
• display color depth
• no. of touchpoints
• is iOS / is Android

These features depend on the device’s hardware or operating sys-
tem, and changing them would require a much higher effort. Even
if a user is able to install another operating system on a device,
the platform, vendor, and productsub cannot be changed. It may
be possible to feign other vendors or use alternative display res-
olutions; however, faking the availability of vibration, number of
touchpoints, or display data needs a higher effort. We therefore
expect these features to be immutable in our scenarios.

Our assumptions are that first the user has to know that device
attributes are captured. Additionally, she needs to know which spe-
cific attributes are gathered and used for fingerprinting. If a user

is aware of this information, it would be possible to do a purpose-
ful and selective randomization/faking of the attributes. If a user is
only aware of the fact that the device gets fingerprinted but does not
know about specific attributes, it would still be possible to perform
a general randomization of common features to deceive standard
fingerprinting techniques.

5.2 Evasion Attacks
The overall goal of evasion attacks is to prevent the fingerprint-

ing system from recognizing a mobile device by changing specific
properties of the device so that its feature values will be accordingly
changed. However, this is not an easy task for the user because
the probability of performing a successful attack also depends on
the knowledge that the user has of the fingerprinting system. This
means that a user that wants to evade the system should have knowl-
edge of several elements:
• all the features that the system uses;
• the system detection algorithm and (in our case) its measure

of dissimilarity between devices;
• previous accesses that have been made to the system, and

their impact on the feature set. This is crucial, as if some
changes could create a greater distance among one access
and the other, they can reduce the distance with another ac-
cess (from the same device) made with different resources;
• the system decision boundary, which depends on the nearest-

sample matching rule. This is particularly critical when the
same device accesses the website multiple times.

Collecting the knowledge listed in the previous points implies
that a user has perfect knowledge of the system [6]. Obtaining such
information for an outsider is a difficult task, and might not be fea-
sible most of the times.

For this reason, the reported evaluation of the system assumes
that the user has limited knowledge of the system. This means that
she knows the properties of some devices that accessed the website
(e.g., their browser or their proxy settings). Her goal is changing
the parameters of her own device so that they match, as much as
possible, the ones of another device. The rationale behind this at-
tack is that the access with the modified parameters will confuse
the system and will stop it from correctly detecting the device (as
it should reduce the dissimilarity measure from other devices). It is
worth noting that the user does not know the impact that her actions
will have on the features.

To provide events that can be concretely realized by the user with
relatively low effort, we imagine four scenarios under which the
user makes changes. These scenarios can be manually achieved by
changing a device’s configuration, or can be automatically obtained
by using specific applications.

1. Second browser. Users can create variance within the fea-
ture set by installing a second browser and alternately using two
browsers. This would affect the following features: (i) user agent,
(ii) canvas hash, (iii) plugins.

2. Second browser with different settings. In addition to al-
ternate between two browsers, users can adjust the settings of one
browser in contrast to the settings of the other browser, e. g., en-
abling DNT for one browser and disabling it for the second. Hence,
several features that are extracted from these settings would change,
creating more differences between the two browsers. For example,
this could be achieved by deleting cookies and local storage after
every usage; by changing the navigator language; by using popup
blocker and DNT-header; by logging out from websites and clear-
ing the browsing history everytime. These actions would change
the first scenario’s features and would additionally modify these:
(i) local storage ID, (ii) cookie ID, (iii) navigator language, (iv)
popup blocker active, (v) DNT option enabled, (vi) login status,
(vii) browsing history.

198

Figure 3: Average ROC performance chart for our system un-
der multiple scenarios of evasion attacks.

3. Proxy. Besides changing settings related to the device di-
rectly, users can influence features used for fingerprinting by using
a proxy connection. This could be done by resorting to manual con-
figurations, or by employing a proxy application. Such a behavior
would change a client’s location-related features: (i) IP address,
(ii) country, (iii) city, (iv) hostname, (v) hostname wildcard.

4. Two browsers and a proxy. The combination of the preced-
ing actions that can be taken by users builds the strongest scenario.
Using a second browser with differently adjusted settings, and re-
sorting at the same time to a proxy connection affects all of the
above listed features.

5.3 Evasion Results
For this experiment, we considered the whole dataset as a train-

ing set. As a test set, we changed the features of each sample of
the training set, based on the scenarios described above. As target
values, we randomly selected values that belonged to other devices.
This has been done to guarantee that the values were coherent and
not just randomly chosen. We repeated this experiment ten times
for each scenario by always using different target samples. It is
worth noting that we tried to simulate the scenarios in the most
accurate way. For example, we considered the fact that a device us-
ing Android could not switch its browser to one belonging to IOS.
For instance, it was not possible to change Chrome to Safari in a
non-IOS device.

Figure 3 shows the average ROC curves for our system under
the aforementioned evasion scenarios. Since some ROC curves are
really similar to each other, we also computed the portion of the
Area Under the ROC curve (pAUC) for values of false positives
between 0% and 1%, and for the ones between 0% and 10%. From
these results, we can observe the following facts:

a) Simply changing the browser or using a proxy does not impact
the system performances. Presumably, this happens because the
user is not aware of the devices that the system has already seen.
Changing the browser might be risky, as the system might be more
sensitive to the new browser than to the previous one. Furthermore,
the distance function that we chose also depends on the number
of features that are different between the two samples. The more
features the user manages to change, the better the attack will be. In
this case, only changing browser or proxy brings too few features
changes, degrading the effectiveness of the attack.

b) What really impacts the performances of the system is chang-
ing the browser and its settings. Although the detection rate does
not completely break, we notice a significant drop of around 60%
at zero false positives. We assume that this is due to an increased
number of feature changes. This is inline with the action taken by

the user: by completely changing the browser settings, she signifi-
cantly affects the fingerprinting capabilities of the system.

c) When the user changes her browser settings and uses a proxy,
we observe a complete crash of the detection rate with zero false
positives. To make the system provide good detection values, false
positives have to increase up to 10% for a detection rate of 70%.

The results of this experiment suggest that when a user changes
the browser settings and resorts to a proxy, she is able to completely
evade a system that does not make any mistakes at detecting devices
that have never been seen before. This behavior creates serious con-
cerns, as errors at detecting never-seen devices might compromise
the functionality of the system in the long term.

To conclude, this experiment shows that evading mobile device
fingerprints is possible, but not so easy as it might be expected at
a first glance. The user has to produce a significant effort to obtain
an effective evasion. At the same time, our analysis results show
that even a complete evasion is possible when the user resorts to a
second browser with modified settings, and to a proxy.

6. DISCUSSION AND LIMITATIONS
Ethical Considerations. While our institution does not do for-

mal ethics review, e.g., such as an Internal Review Board (IRB),
we carefully considered the ethical considerations of experimenta-
tion and data collection. We conducted our experiments such that:
1) all participants were informed of the nature of the experiment,
how their data would be used, and had an opportunity to opt-out at
any time during data collection; 2) all data was stored using non-
identifiable information to protect the privacy of participants; and
3) all participants were allowed to view and received feedback on
the data provided as an incentive for their participation. We did not
collect any personal identifiable information and all participants re-
mained anonymous.

Limitations. As we did not collect personal information about
the participants of our experiments, we are not able to provide in-
formation like their age, technophilia or any demographic charac-
teristics. Although we employed in our work a comprehensive fea-
ture set, future technologies might lead to features that can be used
to fingerprint mobile devices. We also point out that our detection
approach might suffer from slowdowns if the database was filled
with millions of accesses. Although in this case it was not neces-
sary, it is possible to rely on techniques such as prototype selection
to reduce the size of the database without losing accuracy.

7. RELATED WORK
Several studies showed that client fingerprinting is a valuable

method and that it is used in practice for user tracking, fraud de-
tection, or advertising [11, 15, 19, 21]. Fingerprinting does not aim
to replace stateful fingerprinting via cookies, yet. However, fin-
gerprinting is harder to detect and allows user recognition of those
who deleted their browser’s cookies [2].

A detailed investigation of how web browser fingerprinting works
has been conducted by Nikiforakis et al., showing that user privacy
could be compromised by modern fingerprinting techniques [21].
The authors’ results are mostly limited to full-weight browsers in-
stalled on desktop computers which are far more customizable than
browsers on mobile devices. As the habit of mobile browsing in-
creases constantly, we reviewed browser fingerprinting techniques
in the context of mobile devices.

A first study on mobile web tracking was performed by Eu-
bank et al. [12]. While stating that mobile tracking is an under-
researched area, the authors show differences between desktop and
mobile fingerprinting, focussing on cookies and HTTP headers.
However, this work is limited to Firefox Mobile on Android, which
is not the most common browser on mobile devices. Our study con-

199

tains data from different browsers as well as different systems and
devices, and it is based on a larger feature set.

A study of canvas fingerprinting and evercookies showed that
users have only little to oppose against these techniques [1]. The
proposed mitigation is to ask the user for permission at every read
event which is, as of yet, only implemented in the Tor Browser [9].
Evercookies are hard to defend on desktop computers as common
browsers do not provide an interface for checking and deleting the
local storage or Indexed DB, and Flash storage is not isolated. We
found that the user cannot browse the local storage or IndexedDB
on mobile devices, too. Newer versions of Apple’s iOS (7 and later)
combine the functions of deleting cookies and the local storage.
However, we see that many users do not delete their cookies and
data regularly. Even worse, if a user’s device can be recognized
without local storage data and cookies, the information about if
and how often a user clears cookies and website data may become
a new feature describing the user’s behavior and awareness.

An approach to defend against fingerprinting is the randomiza-
tion of characteristic attributes. Nikiforakis and Livshits have shown
that this technique can be used to deceive especially the finger-
printing of installed fonts and browser plugins [20]. Firegloves is
a proof-of-concept Firefox plugin following this approach [7]. The
drawback of randomization is its noisiness: If a feature is random-
ized on every access, sophisticated fingerprinting techniques could
repeatedly perform measurements to determine the randomness and
finally obtain the unrandomized features. Also, randomizing the
lists of fonts and plugins cannot mitigate fingerprinting mobiles.

Prior work has shown that data measured by hardware sensors
like accelerometers can be used to fingerprint mobile devices [8,
10]. Although this is only a reasonable technique to recognize de-
vices having such sensors, and it needs extensive training measure-
ments. In practice, ad-trackers and anti-fraud systems gather data
for fingerprints in less than a second. For our test, we also used ac-
celerometer data, but this was measured in less time and combined
with other features instead of being used as single feature.

Besides accelerometers, the internal clock of mobile devices has
been investigated for fingerprinting [16, 18]. This elaborated tech-
nique is used to measure hardware imperfections of a device’s inter-
nal clock by comparing to time synchronization services. Although
this is a reliable method to fingerprint mobile devices, it requires
measurements over a long period of time, which is not applicable
for modern web-based fingerprinting. Additionally, there is no way
to access a device’s hardware clock via JavaScript, so calculating
clock skews is not realizable using web techniques only.

Targeting mobile devices, Azizyan et al. proposed to identify
the user’s ambience with the help of environmental features like
sound and light [5]. Although this approach may provide informa-
tion about a user’s location, it may not be applicable for low-noise
fingerprinting through the web. A mobile browser will ask for per-
mission to use hardware such as the microphone, which arouses the
user’s awareness. In contrast, we restricted our work to inconspic-
uous web techniques that are realizable in practical scenarios.

8. CONCLUSION
Client fingerprinting is used in practice for several use cases like

fraud detection or user tracking. In this paper, we studied tracking
libraries that are established in the field and compared their meth-
ods for fingerprinting client systems. We reviewed and investigated
these common methods with regard to mobile devices and discov-
ered that attributes that are characteristic for full-weight browsers
of desktop computers lose their descriptive power when applied to
mobile devices.

We then introduced a feature set containing common features as
well as features especially targeted for mobile devices and applied

weights based on the information gain of each feature. The evalu-

ation of this feature set is based on real-world data from an online
test survey and shows that mobile devices can be fingerprinted well.
Finally, we investigated how users can evade mobile device finger-
printing, to allow a users to decide whether or not she wants to be
tracked. We discussed different possibilities for web users to pro-
tect their privacy and studied four different evasion scenarios. The
results indicate that it is possible, although not easy in practice, to
escape fingerprinting mechanisms that aim at tracking mobile de-
vices using our advanced techniques.

Acknowledgment
Davide Maiorca gratefully acknowledges Sardinia Regional Gov-
ernment for the financial support of his PhD scholarship (P.O.R.
Sardegna F.S.E. Operational Programme of the Autonomous Re-
gion of Sardinia, European Social Fund 2007-2013 - Axis IV Hu-
man Resources, Objective l.3, Line of Activity l.3.1.).

We would like to thank our shepherd Adam Aviv for his sup-
port in finalizing this paper and the anonymous reviewers for their
constructive and valuable comments.

9. REFERENCES
[1] ACAR, G., EUBANK, C., ENGLEHARDT, S., JUAREZ, M., NARAYANAN, A.,

AND DIAZ, C. The web never forgets: Persistent tracking mechanisms in the
wild. SIGSAC 2014.

[2] ACAR, G., JUAREZ, M., NIKIFORAKIS, N., DIAZ, C., GÜRSES, S.,
PIESSENS, F., AND PRENEEL, B. FPDetective: Dusting the web for
fingerprinters. CCS 2013.

[3] ALEXA INTERNET, INC. Top 1M Websites. http://www.alexa.com/topsites/,
2014.

[4] APPLICATIONS, N. Mobile/Tablet Browser Market Share.
http://www.netmarketshare.com/browser-market-share.aspx, 2014.

[5] AZIZYAN, M., CONSTANDACHE, I., AND ROY CHOUDHURY, R.
Surroundsense: Mobile phone localization via ambience fingerprinting.
MobiCom ’09.

[6] BIGGIO, B., CORONA, I., MAIORCA, D., NELSON, B., SRNDIC, N.,
LASKOV, P., GIACINTO, G., AND ROLI, F. Evasion attacks against machine
learning at test time. ECML PKDD 2013.

[7] BODA, K. Firegloves. http://fingerprint.pet-portal.eu/?menu=6.

[8] BOJINOV, H., MICHALEVSKY, Y., NAKIBLY, G., AND BONEH, D. Mobile
device identification via sensor fingerprinting. CoRR abs/1408.1416 (2014).

[9] BRADE, K. The tor browser. https://gitweb.torproject.org/tor-browser.git.

[10] DEY, S., ROY, N., XU, W., CHOUDHURY, R. R., AND NELAKUDITI, S.
AccelPrint: Imperfections of Accel- erometers Make Smartphones Trackable.
NDSS 2014.

[11] ECKERSLEY, P. How Unique is Your Web Browser? PETS 2010.

[12] EUBANK, C., MELARA, M., PEREZ-BOTERO, D., AND NARAYANAN, A.
Shining the floodlights on mobile web tracking – A privacy survey. W2SP 2013.

[13] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P.,
AND WITTEN, I. H. The weka data mining software: An update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10–18.

[14] HUPPERICH, T., MAIORCA, D., KÜHRER, M., HOLZ, T., AND GIACINTO,
G. On the Effectiveness of Fingerprinting Mobile Devices. Tech. Rep.
TR-HGI-2015-002, Horst Görtz Institute for IT-Security, 2015.

[15] KAMKAR, S. Evercookie – never forget. Retrieved at April 29th, 2014 from
http://samy.pl/evercookie/.

[16] KOHNO, T., BROIDO, A., AND CLAFFY, K. Remote physical device
fingerprinting. Dependable and Secure Computing, IEEE Transactions on 2, 2
(April 2005).

[17] MAXMIND, INC. MaxMind GeoIP2.
https://www.maxmind.com/en/geoip2-services-and-databases.

[18] MOON, S., SKELLY, P., AND TOWSLEY, D. Estimation and removal of clock
skew from network delay measurements. INFOCOM 1999.

[19] MOWERY, K., AND SHACHAM, H. Pixel Perfect: Fingerprinting Canvas in
HTML5. W2SP 2012.

[20] NIKIFORAKIS, N., JOOSEN, W., AND LIVSHITS, B. Privaricator: Deceiving
fingerprinters with little white lies. Tech. Rep. MSR-TR-2014-26, February
2014.

[21] NIKIFORAKIS, N., KAPRAVELOS, A., JOOSEN, W., KRUEGEL, C.,
PIESSENS, F., AND VIGNA, G. Cookieless monster: Exploring the ecosystem
of web-based device fingerprinting. IEEE Symposium on Security and Privacy
2013.

[22] STONE, P. Pixel perfect timing attacks with HTML5. Context Information
Security (White Paper) (2013).

200

