
SuStorID: A Multiple Classifier System for the Protection of Web Services

Igino Corona, Roberto Tronci, Giorgio Giacinto
Dept. of Electrical and Electronic Engineering, University of Cagliari, Italy
{igino.corona,roberto.tronci,giacinto}@diee.unica.it

Abstract

The security of web services is nowadays one of
the major concerns for Internet users. Web services
may manage confidential information, monetary trans-
actions, or even health-critical systems, such as those
employed in public airports or hospitals. A key prob-
lem of web services is that they should work as expected
even in the presence of malicious inputs. Unfortunately,
with the increasing complexity of web services, this task
becomes more and more challenging.

In this paper we present SuStorID, a multiple clas-
sifier system which is able to model legitimate inputs
towards web services, given a sample of web traffic. If
anomalous inputs are detected, web services are pro-
tected according to a set of anomaly templates. Our
experiments, performed on a production environment,
highlight that our system can accurately detect web at-
tacks and help security operators to protect their web
services against known and unknown attacks.

1. Introduction

The widespread deployment of web services makes
them a favorite target for cyber-criminals. The com-
plexity and lack of security training of web developers
may expose web services to a wide range of remote at-
tacks. In particular, Internet miscreants may submit ma-
licious, unexpected inputs towards web services to gain
their control, obtain confidential information, or infect
web visitors in a matter of seconds [6].

Due to the ad-hoc nature of web services, i.e., dif-
ferent services may have different inputs and behav-
ior, defining good rules on web application firewalls
is an error-prone activity which often requires a non-
negligible human effort. The key point is that “safe”
firewall rules should be customized according to ex-
pected inputs and behavior of a certain web service.

In this paper we present SuStorID, an intrusion de-
tection system that can be employed to complement

web application firewalls to the protection of web ser-
vices. Given a sample of web traffic towards a cer-
tain web service, our system is able to automatically
learn the profile of legitimate (normal) inputs. With re-
spect to related work on web security [1], SuStorID is
able to address the presence of noise (attacks) within
the training set. Moreover, it introduces the concept of
anomaly templates, i.e., user-defined models that asso-
ciate a suitable action in response to anomalous web
traffic. Our experiments on a production environment
show that SuStorID is able to accurately detect web at-
tacks. We also show that detection accuracy can be sig-
nificantly improved in few steps through user interac-
tion. SuStorID is released under open-source license
and can be freely downloaded at http://comsec.
diee.unica.it/sustorid.

2. System Overview

SuStorID presents a multi-classifier architecture,
where each classifier is tailored to the detection of a
specific class of anomalies within a web request (see
Figure 1). SuStorID is structured in a way such that ad-
ditional classifiers can be easily added into the system to
detect new attack classes. This aspect is very important
to keep the tool up-to-date, due to the rapid evolution of
computer attacks. Moreover, this architecture can help
security operators to obtain valuable information about
targeted vulnerabilities and thus assess the real treats
posed by each anomalous event.

Each classifier monitors a particular field of a re-
quest message, e.g., method, web application, HTTP
version, (see Figure 2), and establishes whether such
a field exhibits anomalies or not. Since each classifier
is tailored to detect a specific class of attacks against
web services, an alert is raised if at least one classifier
detects an anomaly (OR rule).

In order to protect the web services, SuStorID em-
ploys a set of predefined models called anomaly tem-
plates. An anomaly template associates an action (e.g.
log, deny request, or ignore) to an anomalous event.

 anomalies

Web Server

web request

(forward)
anomaly

templates

security

operator

modsecurity

action (e.g. drop, redirect, allow…)

method

web application

http version

attribute input

attribute sequence

header

header input

anomaly detectors

cyber-criminals

Internet

malicious

request

change

probability

thresholds
update

templates

Figure 1. Architecture of SuStorID.

GET /search?q=ICPR&hl=en HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0
Accept: text/html
Accept-Charset: utf-8
Accept-Language: en
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.google.com
Cookie: NID=34=Y7dBzu40Q2eiPOOwXKTZ

Figure 2. Example of a HTTP request mes-
sage. Message fields: web application, HTTP

version, method, header, header input value, web

application attribute, attribute input value.

Such rules can be written by a security expert to cod-
ify context-sensitive information that is difficult or even
impossible to infer from training data. On the other
hand, since these rules operate at classification level and
classifier outputs have a well-defined meaning, anomaly
templates may be easier to write and understand.

3. Learning

One of the biggest problems of web security is to de-
tect unknown malicious requests in a real environment.
Typically, the number of normal (legitimate) web re-
quests largely outnumber the number of malicious re-
quests. This is because, usually, most of users employ
web services as expected. Thus, SuStorID employs a
sample of real traffic towards web services to infer the
profile of their legitimate inputs. In order to deal with
attacks within the training set, an outlier filtering al-
gorithm is applied to each model, independently from
each other (see Section 3.1). Such an algorithm is “gen-
eral purpose” in the sense that it can be applied to any
classifier, regardless the employed feature set. Thus, no
new outlier filtering algorithms are required, if new fea-
tures/models are added to detect new attacks.

3.1 Outlier filtering algorithm

Let us consider a training set S = {x1,x2, . . . ,xN}
composed by N patterns. A statistical model m is built
using the entire set S. Let p[x|m] be the likelihood
given by model m to pattern x ∈ S. Now, let us de-
fine the relative distance measure δ between two pat-
terns xj,xk ∈ S as

δ(xj,xk) = |p[xj|m]− p[xk|m]|

The training set can be expressed as S = T ∪ O,
where sets T and O contain target and outlier patterns,
respectively. In order to identify these two sets, we ap-
ply a single-linkage clustering, where the distance be-
tween two patterns is defined by δ(xj,xk) and the num-
ber of clusters is two. We validate the clusters T and O
by verifying that at|T | > |O|, where at is the maximum
fraction of expected outliers within S. If at|T | > |O|
is verified, a new model m′ is trained using only pat-
terns in T , which is considered as the filtered training
set. Otherwise, S is considered as composed by target
patterns only, i.e., no filtering is performed. The proba-
bility threshold for m′ is set so that all filtered training
samples are classified as legitimate.

3.2 Request features and models

The vast majority of attacks against web applications
are realized by submitting inputs having an anomalous
structure, length, or unexpected symbols. To highlight
such anomalies, SuStorID employs three main models:
α, β, γ; they are described in Sections 3.2.1, 3.2.2,
3.2.3, respectively. Each main model can be used to
infer the statistical profile of a different traffic feature,
and each feature may be useful to spot a different attack
technique (see Table 1). For instance, modeling the sta-
tistical distribution of legitimate input size allows to de-
tect buffer overflow attacks, which typically show a rel-
atively high size of input strings, while Hidden Markov

Table 1. Summary of the features employed by SuStorID. For each feature, we specify the main category of
attacks that may be detected, and its main model.

Feature Attacks Model

Sequence of web application attributes malicious input on “uncommon” attributes α for each web application
Sequence of input chars on web app. attributes any input validation attack against a web app. attribute α for each attribute
Request Method information gathering / buffer overflow attacks exploiting this field γ
HTTP version information gathering / buffer overflow attacks exploiting this field γ
Request headers: input length buffer overflow attacks leveraging on header input β for each request header
Request headers: allowed input characters (digit or
alphabetic or alphanumeric)

code injection attacks leveraging header input γ for each request header

Models can detect more complex attacks (e.g. such
as those against web application attributes), by high-
lighting an anomalous input structure. For more details
about web attack techniques, the interested reader can
refer to the Open Web Application Security Project[4].

3.2.1 Model α: sequence of symbols

A sequence of symbols is described through a Hidden
Markov Model. The training phase is based on the
Baum-Welch algorithm [5]. We compute the number of
states as the average number of distinct symbols of each
training sequence. Moreover, we randomly initialize the
state transition and the symbol emission matrices. Fi-
nally, we build the dictionary of symbols by extracting
them from training sequences. These choices allowed
us to attain very good results in previous work [2] and
do not require a-priori knowledge about the structure
of training sequences. Given an observed sequence x,
we obtain the most probable state sequence by using the
Viterbi Algorithm [5]. Afterwards, the likelihood of the
sequence p[x|α] is computed by combining state transi-
tion and the symbol emission matrices, according to the
most probable state sequence for the sequence of sym-
bols under evaluation.

3.2.2 Model β: statistical distribution of a non-
negative integer value

The training set S = {x1, . . . , xN} is composed by
non-negative integer values. We define the probability
of a certain value x as:{

p[x|β] = σ2

(x−µ)2 if x ≥ µ+ σ

p[x|β] = 1 otherwise
(1)

In practice, we compute the probability that the random
variable X , having mean µ and variance σ2 exceeds the
x value. To this end, we use the Chebyshev inequality
p[|X − µ| ≥ q] ≤ σ2

q2 , with q = |x − µ| and consider
the upper limit of p[|X − µ| ≥ |x− µ|].

Source Attack techniques Target
simulation
(total: 303)

Cross-site scripting (77), SQL (73),
XPath (18), LDAP (18) and Alpha-
betic (44) Injection, Integer Over-
flow (40), Server-side Includes (33)

Web server, Web
applications, Re-
quest Headers

in-the-wild
(total: 77)

Brute-force: check for web applica-
tions with known bugs (41), SQL In-
jection (4), Cross-site scripting (19),
other Input Validation attacks (13)

Web server, Web
Applications, Re-
quest Headers

Table 2. Simulated attacks and attacks in-the-
wild against the web services under evaluation.

3.2.3 Model γ: statistical distribution of symbols

The training set S = {x1, . . . , xN} is composed by
symbols. The probability of a generic symbol x is com-
puted as its relative frequency within S:

p[x|γ] = |{xi : xi = x, ∀i}|/N (2)

4. Experiments

We collected 51,848 requests (between December
23, 2011 and March 28, 2012) from a web server
hosting different public services of the University of
Cagliari. Such requests can be roughly subdivided into
three main classes: legitimate, attacks in-the-wild and
simulated attacks. Legitimate requests are performed
by normal users while accessing to web services un-
der evaluation. On the other hand, attacks in-the-wild
are requests generated by malicious users or (ro)bots,
to either find or exploit security vulnerabilities within
these web services. Finally, simulated attacks are re-
quests that we issued using WebScarab1, in order to
thoroughly simulate the behavior of a malicious, skilled
user. Table 2 briefly categorize and quantify these at-
tacks. Real attacks were identified by: (a) looking

1WebScarab is a powerful tool for web vulnerability testing.
See https://www.owasp.org/index.php/Category:
OWASP_WebScarab_Project.

web requests for known attack signatures (see [3]), and
(b) training a separate instance of SuStorID and manu-
ally checking patterns having lower probability for each
model. It is worth notice that step (b) is aimed at detect-
ing unknown/custom attacks against the web services
under test, that would otherwise remain undetected,
e.g., because no signatures are available for these at-
tacks. This semi-automated procedure is based on SuS-
torID itself because, to the best of our knowledge, no
other equivalent systems are currently available.

4.1 Detection Accuracy and User Interaction

Our evaluation was aimed to point out detection ac-
curacy of SuStorID on a real operating setting. To
this end, we trained SuStorID using the first 30,000
web requests and evaluated its classification accuracy
on the remaining (last) 21,848 requests, according to
their timestamps. We set at = 1.5%, i.e. no more than
1.5% of attacks are expected within the training patterns
given to each model. The whole training phase required
about 10.5 h on a computer with Intel Core 2 T7200
processor, 2 GB of RAM and Linux OS kernel 2.6.32.
Analyzing a single request (detection of anomalies and
anomaly template matching) took 0.358 s on average.

Table 3 highlights the detection accuracy of SuS-
torID in terms of attack detection rate for simulated
(DRsim) attacks, attacks found in-the-wild (DRwild),
and false alarm rate (FR) without user interaction (UI
None) and with an increasing number of anomaly tem-
plates (AT) provided by a human operator. We simu-
lated a human operator who setups AT to suppress ob-
vious false alarms, such as requests related to obsolete
links, legitimate static resources which never appeared
during the training phase, or requests having ad-hoc
(rare) headers which do not represent any threat. As
it can be seen from Table 3, SuStorID was able to spot
every attack request within the test set. Nevertheless,
without the employment of anomaly templates, SuS-
torID shows a relatively high FR (5.4%), which may
be prohibitive, especially with large amounts of web
traffic. On the other hand, most of false alarms can be
easily eliminated with the setup of anomaly templates.
In our experiments, we were able to narrow down FR
from 5.4% to 0.47% by defining 14 anomaly templates
(the whole process took about 20 min). This is because
many false alarms are easy to be interpreted by a human
operator, and they are often duplicate.

5. Conclusions

The security of web services is nowadays one of the
major concerns for Internet users. In this paper we pre-

UI FR DRsim DRwild

None 1,179/21,848≈5.4% 303/303=100% 77/77=100%
AT: 1 1,088/21,848≈4.98% 303/303=100% 77/77=100%
AT: 2 690/21,848≈3.16% 303/303=100% 77/77=100%
AT: 3 458/21,848≈2.1% 303/303=100% 77/77=100%
AT: 4 448/21,848≈2.05% 303/303=100% 77/77=100%
AT: 5 438/21,848≈2% 303/303=100% 77/77=100%
AT: 6 414/21,848≈1.89% 303/303=100% 77/77=100%
AT: 7 409/21,848≈1.87% 303/303=100% 77/77=100%
AT: 8 401/21,848≈1.83% 303/303=100% 77/77=100%
AT: 9 381/21,848≈1.74% 303/303=100% 77/77=100%
AT: 10 317/21,848≈1.45% 303/303=100% 77/77=100%
AT: 11 155/21,848≈0.71% 303/303=100% 77/77=100%
AT: 12 125/21,848≈0.57% 303/303=100% 77/77=100%
AT: 13 113/21,848≈0.52% 303/303=100% 77/77=100%
AT: 14 103/21,848≈0.47% 303/303=100% 77/77=100%

Table 3. Detection accuracy of SuStorID, evalu-
ated on real web traffic and simulated attacks, for
increasing levels of User Interaction (UI).

sented SuStorID, a multiple classifier system to the pro-
tection web services. Our experimental results on a pro-
duction environment highlight that SuStorID can accu-
rately detect web attacks. We also introduce the concept
of anomaly templates. Such templates can be used to re-
spond to anomalous events, due to known or unknown
attacks, in real-time. Our experiments show that they
can also be exploited by a human operator to signifi-
cantly reduce false alarms with little effort.

Acknoledgements This research has been partially
carried out within the project “Advanced and secure
sharing of multimedia data over social networks in the
future Internet” funded by the Regional Administration
of Sardinia, Italy (CUP F71J11000690002)

References

[1] V. Chandola, A. Banerjee, and V. Kumar. Anomaly de-
tection: A survey. ACM Computing Surveys, 41(3):1–58,
2009.

[2] I. Corona, D. Ariu, and G. Giacinto. Hmm-web: a frame-
work for the detection of attacks against web applica-
tions. In IEEE Int. Conf. on Communications (ICC’09),
pages 747–752, Piscataway, USA, 2009. IEEE Press.

[3] MITRE. Common vulnerabilities and exposures.
http://cve.mitre.org, March 2012.

[4] OWASP. http://www.owasp.org.
[5] L. Rabiner. A tutorial on hidden markov models and se-

lected applications in speech recognition. In Proceedings
of the IEEE, volume 77, pages 257–286, 1989.

[6] T. Scholte, D. Balzarotti, and E. Kirda. Have things
changed now? An empirical study on input validation
vulnerabilities in web applications. ”Computers and Se-
curity”, 2012, ISSN: 0167-4048, 12 2011.

