
Detecting Malicious Flux Service Networks through

Passive Analysis of Recursive DNS Traces

Roberto Perdiscia,b, Igino Coronac, David Dagona, and Wenke Leea

aCollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
bDamballa, Inc. Atlanta, GA 30308, USA

cDIEE, University of Cagliari, 09123 Cagliari, ITALY

perdisci@gtisc.gatech.edu, igino.corona@diee.unica.it, {dagon,wenke}@cc.gatech.edu

Abstract—In this paper we propose a novel, passive
approach for detecting and tracking malicious flux ser-
vice networks. Our detection system is based on passive
analysis of recursive DNS (RDNS) traffic traces collected
from multiple large networks. Contrary to previous work,
our approach is not limited to the analysis of suspicious
domain names extracted from spam emails or precom-
piled domain blacklists. Instead, our approach is able to
detect malicious flux service networks in-the-wild, i.e., as
they are accessed by users who fall victims of malicious
content advertised through blog spam, instant messaging
spam, social website spam, etc., beside email spam. We
experiment with the RDNS traffic passively collected at
two large ISP networks. Overall, our sensors monitored
more than 2.5 billion DNS queries per day from millions
of distinct source IPs for a period of 45 days. Our
experimental results show that the proposed approach is
able to accurately detect malicious flux service networks.
Furthermore, we show how our passive detection and
tracking of malicious flux service networks may benefit
spam filtering applications.

I. INTRODUCTION

Internet miscreants and cyber-criminals are always

looking for new ways to cover the traces of their mali-

cious activities while preserving their illicit revenues. To

this end, malicious flux service networks have recently

started to thrive [11]. Malicious flux service networks

can be viewed as illegitimate content-delivery networks

(CDNs). Legitimate CDNs have been used for quite

some time to provide a high degree of availability,

scalability, and performance to legitimate high-volume

Internet services. A CDN usually consists of a relatively

large number of nodes scattered across multiple loca-

tions around the world. Whenever a user requests a ser-

vice provided through a CDN, the CDN’s node closest

(non necessarily in a geographic sense) to the user is

usually chosen to provide the requested content with

high performance. Differently from legitimate CDNs,

whose nodes are professionally administered machines,

the nodes of a malicious flux service network, a.k.a. flux

agents, are represented by malware-infected machines.

The flux-agents are usually part of a botnet and can be

remotely controlled by the malware author, who is often

referred to as the botmaster.

Malicious flux service networks are commonly used

to host phishing websites, illegal adult content, or serve

as malware propagation vectors, for example. The main

technical difference between a malicious flux service

network and a legitimate CDN is that, while the nodes

of a legitimate CDN are highly reliable and tightly

controlled by the CDN administrator, botmasters do not

have complete control over the flux agents. Many of

the compromised machines that form a malicious flux

network may be turned on and off by their owners at

any time, making the uptime of each flux agent hard to

predict. Also, differently from CDNs, it may be hard for

the botmaster to tightly monitor the load on each node,

and redistribute the received content requests accord-

ingly. In order to cope with this problems and maintain

high content availability, botmasters usually set up their

malicious flux services using fast-flux domain names.

In practice, fast-flux domain names are characterized

by the fact that the set of resolved IP addresses (the

flux agents) for these domain names change rapidly,

potentially at every DNS query [12]. Furthermore, since

it is usually hard for the botmaster to control exactly

where the malware propagates and what machines are

infected by her bot software, the flux agents are often

scattered across many different networks [12].

A. Related Work

A number of approaches for detecting fast-flux do-

main names have been recently studied in [3, 9, 8, 7],

for example. To the best of our knowledge, these

works differ from each other in the number of features

used to characterized fast flux domains and the details

of the classification algorithms, but are all limited to

mainly studying fast-flux domains advertised through

email spam1. In particular, given a dataset of spam

1The domain names found in domain blacklists and malware
samples are also considered in some works, but they are very few
compared to the domain names extracted from spam emails.

emails (typically captured by spam traps and filters),

potential fast-flux domain names are identified by ex-

tracting them from the URLs found in the body of these

emails [3, 9, 8, 7]. Then, an active probing strategy is

applied, which repeatedly issues DNS queries to collect

information about the set of resolved IP addresses

and to classify each domain name into either fast-flux

or non-fast-flux. The work in [4] is in part different

from other previous work, because it is not limited to

domains found in spam emails. Hu et al. [4] propose to

analyze NetFlow information collected at border routers

to identify redirection botnets, which are a specific

kind of botnets used to set up redirection flux service

networks. However, the information they extract from

network flows is not able to detect flux agents that are

being used as transparent proxies, instead of redirection

points. Also, the work in [4] is heavily based on a DNS

analysis module that applies active probing in a way

very similar to [3, 9], in order to collect the information

necessary to perform the classification of suspicious

domains collected from spam emails and the correlation

with network flows information.

B. Our Approach

In this paper we propose a novel, passive approach for

detecting and tracking malicious flux service networks.

Our detection system is based on passive analysis of

recursive DNS traces collected from multiple large

networks. In practice, we deploy a sensor in front of

the recursive DNS (RDNS) server of different networks,

passively monitor the DNS queries and responses from

the users to the RDNS, and selectively store information

about potential fast-flux domains into a central DNS

data collector. Since the amount of RDNS traffic in large

networks is often overwhelming, we devised a number

of prefiltering rules that aim at identifying DNS queries

to potential fast-flux domain names, while discarding

the remaining requests to legitimate domain names. Our

prefiltering stage is very conservative, nevertheless, it is

able to reduce the volume of the monitored DNS traffic

to a tractable amount without discarding information

about domain names actually related to malicious flux

services. Once information about potential malicious

flux domains has been collected for a certain epoch E

(e.g., one day), we perform a more fine-grain analysis.

First, we apply a clustering process to the domain names

collected during E, and we group together domain

names that are related to each other. For example we

group together domain names that point to the same

Internet service, are related to the same CDN, or are part

of the same malicious flux network. Once the monitored

domain names have been grouped, we classify these

clusters of domains and the related monitored resolved

IP addresses as either being part of a malicious flux

service network or not. This is in contrast with most

previous works, in which single domain names are con-

sidered independently from each other, and classified as

either fast-flux or non-fast-flux [3, 9, 7].

Our detection approach has a fundamental advantage,

compared to previous work. Passively monitoring live

users’ DNS traffic offers a new vantage point, and

allows us to capture queries to flux domain names that

are advertised through a variety of means, including

for example blog spam, social websites spam, search

engine spam, and instant messaging spam, beside email

spam and precompiled domain blacklists such as the

ones used in [3, 9, 8, 7]. Furthermore, differently

from the active probing approach used in previous

work [3, 9, 8, 7], we passively monitor live users’ traffic

without interacting ourselves with the flux networks.

Active probing of fast-flux domain names [3, 9, 8, 7]

may be detected by the attacker, who often controls the

authoritative name servers responsible for responding to

DNS queries about her fast-flux domain names. If the

attacker detects that an active probing system is trying to

track her malicious flux service network, she may stop

responding to queries coming from the probing system

to prevent unveiling further information. On the other

hand, our detection system is able to detect flux services

in a stealthy way.

We implemented a proof-of-concept version of our

detection system, and experimented with the RDNS

traffic passively collected at two large ISP networks.

Overall, our sensors monitored more than 2.5 billion

DNS queries per day from milions of distinct source

IPs for a period of 45 days. Our experimental results

show that the proposed approach is able to accurately

distinguish between malicious flux services and legiti-

mate CDNs or other legitimate services. Furthermore,

we show how the output of our passive detection and

tracking of malicious flux networks may benefit the

accuracy of spam filtering applications.

II. DETECTING MALICIOUS FLUX NETWORKS

In this paper we focus on detecting malicious flux

networks in-the-wild. We passively observe the RDNS

traffic generated by a large user base, and we assume

that during their normal Internet experience some of

these users will (intentionally or unintentionally) request

malicious content served through a flux network. In

practice, given the large user base we are able to

monitor, it is very likely that at least some of these

users will (unfortunately) fall victims of malicious web

content, and will therefore “click” on (and initiate DNS

2

queries about) flux domain names. We aim to detect

such events, and track the flux domain names and the

IP address of the related flux agents contacted by the

victims in the monitored network. Since we perform

passive analysis and we monitor real users’ activities,

this allows us to stealthily detect and collect information

about “popular” malicious flux networks on the Internet,

regardless of the method used by botmasters to advertise

the malicious content served by their flux networks.

A. Characteristics of Flux Domain Names

Fast-flux domains are characterized by the following

main features: a) short time-to-live (TTL); b) the set

of resolved IPs (i.e., the flux agents) returned at each

query changes rapidly, usually after every TTL; c) the

overall set of resolved IPs obtained by querying the

same domain name over time is often very large; d)

the resolved IPs are scattered across many different

networks [12]. Some legitimate services, such as le-

gitimate CDNs, NTP server pools, IRC server pools,

etc., are served through sets of domain names that share

some similarities with fast-flux domains. For example,

domains related to legitimate CDNs often have a very

low TTL and resolve to multiple IP addresses located in

different networks. Also, domains related to NTP server

pools use a very high number of IP addresses which

change periodically using a round-robin-like algorithm.

Although analyzing the value of each single feature

may not be enough to precisely identify malicious flux

domains and distinguish them from legitimate domains,

in Section II-F we will discuss how using a combination

of features allows us to accurately separate flux network

services from legitimate services.

B. System Overview

Figure 1 presents an overview of our malicious flux

service detection system. For each RDNS sensor, we

monitor the sequence of DNS queries and responses

from/to the users’ machines for a predefined period of

time, or epoch, E (e.g., one day). The amount of DNS

traffic towards RDNS servers is often overwhelming,

even for medium- and small-size networks. Therefore,

our detection system first applies a number of filtering

rules to reduce the volume of traffic to be analyzed.

Since we are only interested in flux domain names and

their resolved IPs, the traffic volume reduction filter F1

is responsible for identifying DNS queries that are most

likely related to flux domains, while filtering out queries

to domains that are very unlikely to be “fluxing”. A list

L of candidate flux domain names is kept in memory

and updated periodically. This list contains historic

information about candidate flux domain names, namely

the maximum TTL ever seen for each domain name, the

set of resolved IPs extracted from the DNS responses

over time, etc. At the end of every period ∆T < E (e.g.,

∆T may be equal to a few hours), the list of candidate

flux domain names is checked by filter F2 to verify

if they are still likely to be flux domains, according

to the collected historic information. For example, F2

checks whether the set of resolved IPs returned by the

RDNS for a given domain name has grown during ∆T .

In fact, if a domain name was queried several times

during ∆T , but no new resolved IP was observed, it

is unlikely that the domain name is associated to a

malicious flux service. On the other hand, if the set of

resolved IPs returned by the RDNS for a certain domain

name keeps changing after every TTL, the domain name

is considered a good candidate flux domain. The domain

names that are found not to be likely flux-related are

pruned from the list L.

At the end of each epoch E, the remaining candidate

flux domains in L and related historic information

are transfered from the RDNS sensors to our Detec-

tor machine, where we perform further analysis. In

particular, in this phase we aim at clustering together

domain names related to the same service. We group

domains according to their resolved IP sets. Namely,

given two candidate flux domain names, if their set

of resolved IPs collected during the epoch E intersect

(i.e., the two domain names share a significant fraction

of resolved IPs), we consider the two domain names

as similar. Given this notion of IP-based similarity,

we apply a hierarchical clustering algorithm to group

domain names that are related to each other. In practice,

each of the obtained clusters represents a separate can-

didate flux service network. It is worth noting that filter

F1 and F2 are very conservative. They will “accept”

domains related to malicious flux services, but may also

accept a number of domains related to legitimate CDNs,

NTP pools, and other legitimate services that share

some technical similarities with malicious flux service

networks. As a consequence, a cluster of domains may

represent a malicious flux service, a legitimate CDN,

a pool of NTP servers, etc. Therefore, after clustering

each candidate flux service network (i.e., each cluster of

domain names and the related resolved IPs) is given to a

service classifier, which is trained to classify each clus-

ter into either malicious flux service or legitimate/non-

flux service. In the following we describe each single

component of our detection system more in details.

C. Traffic Volume Reduction (F1)

In order to describe the traffic volume reduction

filter F1, we first need to formally define how the

3

Figure 1: Overview of our detection system.

DNS queries and related responses are represented by

our system. Let q(d) be a DNS query performed by

a user at time ti to resolve the set of IP addresses

owned by domain name d. We formally define the

information in the query and its related response as a

tuple q(d) = (ti, T
(d),P(d)), where T (d) is the time-to-

live (TTL) of the DNS response, and P
(d) is the set

of resolved IPs returned by the RDNS server. Also, let

prefix(P(d), 16) be the set of distinct /16 network

prefixes extracted from P
(d).

In order to reduce the volume of DNS traffic (see filter

F1 in Figure 1) without discarding information about the

domain names that are most likely related to malicious

flux services, we use the following filtering rules. We

“accept” only DNS queries (and related responses) that

respect all of the following constraints:
F1-a) T (d) 6 10800 seconds (i.e., 3 hours).
F1-b) |P(d)| > 3 OR T (d) 6 30.

F1-c) p =
|prefix(P(d),16)|

|P(d)|
> 1

3
.

We now briefly motivate the choice of these rules.

As mentioned in Section II-A, flux domains are charac-

terized by a low TTL, which is usually in the order of

a few minutes [12] and allows the set of resolved IPs

to change rapidly. Rule F1-a excludes all the queries to

domain names whose TTL exceeds three hours, because

such domain names are unlikely to be “fluxing”. Rule

F1-b takes into account the fact that DNS queries to flux

domain names usually return a relatively large number

(> 3) of resolved IPs [12]. The reason for this is that

the uptime of each flux agent is not easily predictable.

A large set of resolved IPs provides a sort of “fault-

tolerance” mechanism for the flux service. However,

a similar result may also be obtained by setting up

flux domains that return a very small set of resolved

IPs (e.g., only one per query) but have a very low

TTL (e.g., equal or close to zero). This way, if a flux

agent is “down”, a new flux agent can be immediately

discovered by performing another DNS query, because

the previous response will be quickly evicted from the

RDNS’s cache. Rule F1-b takes into account both these

scenarios. Rule F1-c is motivated by the fact that the

flux agents are often scattered across many different

networks and organizations. On the other hand, most

legitimate (non-flux) domains resolve to IP addresses

residing in one or few different networks. We use the

function prefix(P(d), 16) to estimate the number of

different networks in which the resolved IPs reside2, and

the ratio p (rule F1-c) allows us to identify queries to

domains that are very unlikely to be part of a malicious

flux service.

D. Periodic List Pruning (F2)

While monitoring the recursive DNS traffic, each

sensor maintains a list L of candidate flux domains.

The list L stores historic information about the candi-

date flux domains and is updated every time a DNS

query passes filter F1. In order to explain how L
is updated, let us formally define how a candidate

flux domain name is represented. At any time t, a

candidate flux domain name d can be viewed as a tuple

d = (ti, Q
(d)
i , T̂

(d)
i ,R

(d)
i ,G

(d)
i), where ti is the time

when the last DNS query for d was observed, Q
(d)
i is

the total number of DNS queries related to d ever seen

until ti, T̂
(d)
i is the maximum TTL ever observed for

d, R
(d)
i is the cumulative set of all the resolved IPs

ever seen for d until time ti, and G
(d)
i is a sequence of

pairs {(tj , r
(d)
j)}j=1..i, where r

(d)
j = |R

(d)
j | − |R

(d)
j−1|,

i.e., the number of new resolved IPs we observed at

time tj , compared to the set of resolved IPs seen until

tj−1. We store only the pairs {(tj , r
(d)
j)}j=1..i for which

r
(d)
j > 0. Therefore G

(d)
i registers when and how much

the resolved IP set of d “grew”, until time ti. When

a new DNS query q(d) = (tk, T (d),P(d)) related to d

passes filter F1, the data structure d ∈ L is updated

according to the information in q(d).

In order to narrow down the number of candidate flux

domains and only consider the ones that are most likely

related to malicious flux services, the list L is pruned at

the end of every interval ∆T < E (e.g., every ∆T = 3
hours). That is, every ∆T we check the status of each

candidate flux domain d ∈ L. Let tj be the time when

this pruning check occurs. Also, let p =
|prefix(R

(d)
j

,16)|

|R
(d)
j

|

2Ideally, it would be better to decide if two IPs belong to two
different networks by mapping each IP to their AS number, and
then compare the AS numbers. However, it may be hard to do this
efficiently, and from our experience using /16 gives us a way to
efficiently compute a good approximation of this result.

4

be the network prefix ratio (see Section II-C) for the

cumulative set of resolved IPs of d ever seen until tj .

We remove from L those domain names for which

F2-a) Qj > 100 AND |G
(d)
j | < 3 AND (|R

(d)
j | 6 5 OR p 6 0.5).

Rule F2-a filters out those domains for which we

monitored more than 100 queries, the cumulative set

of resolved IPs didn’t “grow” more than twice, the total

number of resolved IPs ever seen is low (6 5) or the

network prefix ratio p is low (6 0.5). The filter F2

is justified by the characteristics of flux domain names

described in Section II-A, and domain names that do not

pass F2 are very unlikely to be related to flux services.

E. Domain Clustering

At the end of each epoch E, we consider the list L of

candidate flux domains, and we group them according

to similarities in their resolved IP sets. This clustering

step is motivated by the following reasons. Botmasters

usually operate malicious flux services using a (often

large) number of fast-flux domain names that all point

to flux agents related to the same flux service. We

speculate that one of the reasons for this behavior is

to evade domain blacklists (DBLs).

Our clustering approach groups together domain

names that within an epoch E (equal to one day in

our experiments) resolved to a common set of IP ad-

dresses. To perform domain clustering of flux domains

that are related to each other, we use a single-linkage

hierarchical clustering algorithm [5, 6], which adopts a

“friends of friends” clustering strategy. In order to apply

clustering on a set of domain names D = {d1, d2, ..dn},

we first need to formally define a notion of similarity

between them. Given two domains α and β, and their

cumulative set of resolved IP addresses collected during

an epoch E, respectively R
(α) and R

(β), we compute

their similarity score as

sim(α, β) =
|R(α) ∩ R(β)|

|R(α) ∪ R(β)|
·

1

1 + eγ−min(|R(α)|,|R(β)|)
∈ [0, 1]

(1)

The first factor is the Jaccard index for sets R
(α) and

R
(β), which intuitively measures the similarity between

the two cumulative sets of resolved IPs. The second

factor is a sigmoidal weight. In practices, the higher

the minimum number of resolved IPs in R
(α) or R

(β),

the higher the sigmoidal weight. To better understand

the choice of this weight factor consider this example:

if |R(α) ∩R
(β)| = 1 and |R(α) ∪R

(β)| = 4 or |R(α) ∩
R

(β)| = 10 and |R(α)∪R
(β)| = 40, the Jaccard index is

0.25 in both cases. However, in the second case we want

the similarity to be higher because there are 10 resolved

IPs in common among the domains α and β, instead of

0.0 0.2 0.4 0.6 0.8 1.0

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

cut height (h)

n
u

m
.

o
f

c
lu

s
te

rs

Figure 2: Cluster Analysis, Sensor 1.

just one. We can also think of the second factor as a

sort of “confidence” on the first one. The parameter γ

is chosen a priori, and is only used to shift the sigmoid

towards the right with respect to the x-axes. We set γ =
3 in our experiments so that if min(|R(α)|, |R(β)|) = 3
the weight factor will be equal to 0.5. As the minimum

number of resolved IPs grows, the sigmoidal weight

tends to its asymptotic value of 1.

A similarity (or proximity) matrix P = {sij}i,j=1..n

that consists of similarities sij = sim(di, dj) between

each pair of domains (di, dj) can then be computed.

The hierarchical clustering algorithm takes P as input

and produces in output a dendrogram, i.e., a tree-like

data structure in which the leaves represent the original

domains in D, and the length of the edges represent the

distance between clusters [5]. The obtained dendrogram

does not actually define a partitioning of the domains

into clusters, rather it defines “relationships” among

domains. A partitioning of the set D into clusters

can then be obtained by cutting the dendrogram at a

certain hight h. In order to choose the best dendrogram

cut (i.e., the best clustering), we apply a clustering

validation approach based on plateau regions [2]. In

practice we plot a graph that shows how the number

of clusters varies for varying hight of the cut, and

we look for plateau (i.e., flat) regions in the graph.

For example, consider Figure 2, which is related to

clusters of candidate flux domain names extracted from

an RDNS sensor (see Section III for details) after an

epoch E = 1 day. The long plateau region between 0.1

and 0.7 shows that varying the cut height h does not

significantly change the number of obtained clusters,

thus providing for a sort of “natural grouping” of the

domain names. A manual validation of the clusters

obtained using this analysis strategy confirmed that the

obtained clusters were indeed correct. We will discuss

the clustering results more in detail in Section III.

F. Service Classifier

Each cluster Ci of candidate flux domains can be seen

as a candidate flux service defined by the set of all the

5

domain names in Ci, and the overall set of IP addresses

these domains resolved to during an epoch E. Since fil-

ters F1 and F2 adopt a conservative approach, they may

not be able to filter out domains related to legitimate

CDNs or other legitimate Internet services (e.g., pools of

NTP servers) that have a behavior somewhat similar to

flux services. Therefore, after collecting and clustering

the candidate flux domains we need to determine which

clusters are actually related to malicious flux services

and which ones are related to legitimate and non-flux

networks. To this end, we apply a statistical supervised

learning approach to build a network classifier which

can automatically distinguish between malicious flux

services and other networks, as shown in Figure 1.

We first describe and motivate the set of statisti-

cal features we use to distinguish between malicious

flux services and legitimate/non-flux services. In [9],

Passerini et al. proposed a thorough characterization of

fast-flux domain names in terms of statistical features

for supervised learning. They introduced a set of nine

features based on the analysis of the set of IP addresses

resolved by querying single domain names. In this work

we adapt some of the features proposed in [9] to char-

acterize clusters of domain names (as opposed to single

domains) related to malicious flux services, and we

introduce some additional new features. We divided our

feature set into two groups, namely “passive” features

and “active” features. We call “passive” those features

that can be directly extracted from the information

collected by passively monitoring the DNS queries

from our RDNS sensors. On the other hand, “active”

features need some additional external information to

be computed (e.g., information extracted from whois

queries, geolocation mapping of IP addresses, BGP

announcement data, etc.). For each cluster of domains

obtained as described in Section II-E, and related to an

epoch Em, we compute the following features:

“Passive” Features:

φ1 Number of resolved IPs. This is the overall number of
distinct resolved IP addresses ever observed during epoch
Em for all the domains in a cluster.

φ2 Number of domains. This is the total number of distinct
domain names in a cluster.

φ3 Avg. TTL per domain. Average TTL of the domains in
a cluster.

φ4 Network prefix diversity This is the ratio between the
number of distinct /16 network prefixes and the total
number of IPs. This feature is used to estimate the degree
of scattering of IP addresses among different networks,
and represents a reasonable approximation of “active”
features φ7 and φ8 (explained below).

φ5 Number of domains per network. Number of distinct
domain names that resolved to at least one of the IP
addresses in the considered cluster, during all the previous
epochs E1, E2, ... until the considered epoch Em. In
spite of the high variability of flux domain names, flux

networks are rather stable and persistent [7]. Thus, the
same flux agents will be used by many distinct domain
names, during the time. This feature measures how many
domains can be associated to the IPs (i.e., the flux agents)
in a cluster, throughout different epochs.

φ6 IP Growth Ratio. This represents the average num-
ber of new IP addresses “discovered” per each DNS
response related to any domain in a cluster. Namely,

1
|Ci|

·
P

d∈Ci

|R(d)|

Q(d) .

“Active” Features:
φ7 Autonomous System (AS) diversity, φ8 BGP prefix

diversity, φ9 Organization diversity. We measure the
ratio between the number of distinct ASs where the IPs
of a cluster reside and the total number of resolved IPs.
Also, we compute similar ratios for distinct organization
names and distinct BGP prefixes the IPs in the cluster
belong to.

φ10 Country Code diversity. For each IP in a cluster, we
map it to its geographical location and compute the ratio
between the number of distinct countries across which the
IPs are scattered and the total number of IPs.

φ11 Dynamic IP ratio. The bot-compromised machines that
constitute malicious flux services are mostly home-user

machines. In order to estimate whether an IP is related to
a home-user machine, we perform a reverse (type PTR)
DNS lookup for each IP, and we look for keyworks such
as “dhcp”, “dsl”, “dial-up”, etc., in the DNS response
to identify machines that use a dynamic (as opposed to
static) IP address. We then compute the ratio between the
(estimated) number of dynamic IPs in the cluster and the
total number of IPs.

φ12 Average Uptime Index. This feature is obtained by
actively probing each IP in a cluster about six times
a day for a predefined number of days (e.g. 5 days),
and attempting to establish TCP connections on ports
80/53/443, i.e., HTTP/DNS/HTTPS services3. If the host
accepts to establish the TCP connection, it is considered
up, otherwise it is considered down. An estimate of the
uptime of each IP is given by the ratio between number
of times the IP is found to be up versus the total number
of probes. Feature φ12 is computed as the average uptime
for the IPs in a cluster.

After measuring the features described above, we

employ the popular C4.5 decision-tree classifier [10] to

automatically classify a cluster Ci as either malicious

flux service or legitimate/non-flux service. The reasons

for using a decision-tree classifier are as follows: a)

decision-trees are efficient and have been shown to

be accurate in a variety of classification tasks; b) the

decision-tree built during training can be easily inter-

preted to determine what are the most discriminant

features that allow us to distinguish between malicious

flux services and legitimate/non-flux services; c) the

C4.5 is able to automatically prune the features that

are not useful, and potentially create noise instead of

increasing classification accuracy [10]. We first train

the C4.5 classifier on a training dataset containing a

number of labeled clusters related to malicious flux

3We use TCP instead of UDP for DNS probing, because most off-
the-shelf DNS software are designed to listen on port 53 for both TCP
and UDP communications.

6

services and clusters related to legitimate/non-flux ser-

vices. Afterwards, the classifier can be used “online” to

classify the clusters obtained at the end of each epoch E

from the data collected at each RDNS sensor, as shown

in Figure 1. The details of how we obtained the labeled

training dataset of malicious flux and legitimate clusters

and estimated the accuracy of our service classifier are

reported in Section III.

III. EXPERIMENTS

In this Section we present the results obtained with

our malicious flux network detection system. All the

experiments related to the clustering of candidate flux

domains and classification of flux service networks were

conducted on a 4-core 3GHz Intel Xeon Machine with

16GB or memory. However, because the machine was

shared with other researchers, we constrained ourselves

to using a maximum of 5GB of RAM for our experi-

ments.

A. Collecting Recursive DNS Traffic

We placed two traffic sensors in front of two different

RDNS servers of a large north American Internet Ser-

vice Provider (ISP). These two sensors monitored the

RDNS traffic coming from users located in the north-

eastern and north-central United States, respectively.

Overall, the sensors monitored the live RDNS traffic

generated by more than 4 million users for a period

of 45 days, between March 1 and April 14, 2009.

During this period, we observed an average of about 1.3

billion DNS queries of type A and CNAME per sensor.

Overall we monitored over 2.5 billion DNS queries per

day related to hundreds of millions of distinct domain

names. The traffic collected at each sensor is reduced

using filters F1 and F2, as shown in Figure 1 and

described in Section II. We set the epoch E to be one

day. The overwhelming traffic volume monitored by the

RDNS sensors was effectively reduced from more than

109 DNS queries for tens of millions of distinct domain

names, to an average of 4 · 104 to 6 · 104 candidate flux

domain names per day (depending on the sensor we

consider).

B. Clustering Candidate Flux Domains

At the end of each epoch, the candidate flux domains

extracted by the RDNS sensors are transfered to our

Detector machine, where they undergo a clustering

process. Before applying domain clustering we further

narrow down the number of candidate domain names

using a set of filtering rules reported in Appendix.

This further filtering step is optional and we mainly

use it to reduce the amount of memory required by

the clustering algorithm. These filtering rules may be

tuned (or eliminated) to “accept” more domains for

the clustering step if more memory was available. This

additional filter step reduces the average number of

candidate flux domains to be clustered of almost an

order of magnitude (from 4·104 to 6·104, to about 8·103

domains per sensor). It is worth noting, though, that

similarly to filter F1 and F2 (see Section II) the filtering

rules reported in Appendix are still very conservative.

In fact, from our experimental results we noticed that

even after this further filtering, the list of candidate

domain names still included all the domain names most

likely related to malicious flux services, along with

domain names related to legitimate CDNs, pools of NTP

servers, and other legitimate services.

Once filtering is completed, we apply a single-linkage

hierarchical clustering algorithm [5, 6] to group together

domains that belong to the same network, as described

in Section II-E. After transfering the data collected from

the RDNS sensors to our detection system, the time

needed for the clustering process was around 30 to

40 minutes per day and per each sensor. The hight of

the dendrogram cut was chosen to be h = 0.6. This

choice is motivated by the fact that we want to cut

the dendrogram at an height within the largest plateau

region (see Section II-E). In particular, by plotting the

cluster analysis graphs similar to the one reported in

Figure 2 for different days, we noticed that the value

h = 0.6 (on the x-axes) was always located around

the end of the largest plateau region and provided high

quality clusters. Using h = 0.6 we obtained an average

of about 4,000 domain clusters per day.

Clustering is a completely unsupervised process [5,

6], and automatically verifying the results is usually

very hard if at all possible. Therefore, with the help of

a graphical interface that we developed, we manually

verified the quality of the results for a subset of the

clusters obtained every day. In particular, in order to

assess the quality of the domain clusters, we manu-

ally verified that the domain names in a cluster were

actually related to the same “service” (e.g., the same

CDN, the same malicious flux network, the same NTP

pool, etc.). In many cases this manual evaluation was

straightforward. For example, our clustering algorithm

was able to correctly identify clusters of domain names

belonging to a malicious flux service that was being

used for phishing facebook login credentials. In this

case the domain names advertised by the botmaster all

shared very strong structural similarities because they all

started with “login.facebook”, contained a string of the

form “personalid-RAND”, where “RAND” is a pseudo

7

random string, and ended with “.com”. Also, our IP-

based clustering process (see Section II-E) was able to

correctly group together domain names related to the

NTP server pool in Europe and separate them from the

group of domains related to the NTP pool in North

America, the pool of domains related to Oceania, etc.

The domain names related to the NTP pools in different

regions of the world can visually be distinguished

from each other. Therefore, it was easy to verify that

domains such as 0.europe.pool.ntp.org, uk.pool.ntp.org,

fr.pool.ntp.org were all correctly grouped together, and

separated from the cluster containing au.pool.ntp.org

and oceania.pool.ntp.org, for example. In other cases

we had to confirm the correctness of our clusters by

manually probing the clustered domain names and find-

ing relations between the obtained resolved IPs and the

services (e.g., web pages) provided through them.

C. Evaluation of the Service Classifier

In this section we explain the results related to the

classification of clusters of domains into either mali-

cious flux services or legitimate/non-flux services. As

described in Section II-F, we use a statistical supervised

learning approach to build a service classifier. In order

to use a supervised learning approach, we first need

to generate a dataset of labeled clusters (the “ground-

truth”) which can be used to train our statistical clas-

sifier, and evaluate its classification accuracy. We first

describe how this labeled dataset was generated, and

then motivate why the different statistical features used

by the classifier, and described in detail in Section II-F,

allow us to accurately detect malicious flux service

networks.

In order to construct the labeled dataset for our

experiments, we manually inspected and labeled a fairly

large number of clusters of domains generated by the

clustering process described in Section II-E. To make

the labeling process less time consuming, we developed

a graphical interface that allows us to rank clusters of

domains according to different features. For example,

our interface allows us to rank all the clusters according

to their network prefix diversity (feature φ4), the cu-

mulative number of distinct resolved IPs (feature φ1),

the IP growth ratio (feature φ6), etc. In addition, our

graphical interface allows us to inspect several other

properties of the clusters, such as CNAME entries

collected from DNS responses, the content of Web

pages obtained by contacting a sample of resolved IPs

from a cluster, information gathered from queries to

whois and search engines, etc.

As we discussed in Section II-F, we use the C4.5

decision tree classifier to automatically classify between

AUC DR FP

All Features 0.992 (0.003) 99.7% (0.36) 0.3% (0.36)

Passive Features 0.993 (0.005) 99.4% (0.53) 0.6% (0.53)

φ6, φ3, φ5 0.989 (0.006) 99.3% (0.49) 0.7% (0.49)

Table I: Classification performance computed using 5-
fold cross-validation. AUC=Area Under the ROC Curve;
DR=Detection Rate; FP=False Positive Rate. The numbers
between parenthesis represent the standard deviation of
each measure.

clusters of domains related to malicious flux networks

and clusters related to legitimate or non-flux networks.

We discuss the details of how we trained and tested

our classifier later in this section. Here it is important

to notice that one of the reasons we chose the C4.5

classifier is that the decision tree obtained after the

training period is relatively easy to interpret [10]. In

particular, we noticed that when using the “passive” fea-

tures described in Section II-F for training, the classifier

indicated that the IP Growth Ratio (feature φ6) is the

most discriminant feature (i.e., the root of the decision

tree). This confirms the fact that the rapid change

of the resolved IPs of flux domains is a distinctive

characteristic of malicious flux service networks.

Since we focus on classifying malicious flux services,

and considering that the number of flux agents for

each flux service network is usually very high, we

only consider clusters of domains for which overall

we observed at least φ1 > 10 resolved IPs. With the

help of our graphical interface, during the entire month

of March 2009 we were able to label 670 clusters as

being related to malicious flux networks of various kinds

(e.g., flux networks serving malware, adult content,

phishing websites, etc.), and 8,541 clusters related to

non-flux/legitimate clusters, including clusters related

to different CDNs, NTP pools, IRC pools, and other

legitimate services. Using this labeled dataset and a 5-

fold cross-validation approach, we evaluated the accu-

racy of our classifier. The obtained results are reported

in Table I. It is easy to see that our network classifier is

able to reach a very high Area Under the ROC curve [1],

and a high detection rate and low false positive rate at

the same time. We performed experiments using three

different sets of features. First, we used all the “passive”

and “active” features described in Section II-F to char-

acterize clusters of domains. Afterwards, we repeated

the same experiments using only the “passive” features

(second row in Table I). From this last experiments,

the C4.5 learning algorithm generated a decision tree

whose root was feature φ6, and with feature φ3 and φ5

as children nodes at the top of the tree. This indicates

that these three features tend to be the most “useful”

ones for distinguishing between malicious flux networks

and legitimate networks. For the sake of comparison, we

8

evaluated the classification performance of our classifier

using only these three features. As we can see from the

third row in Table I, only three features are sufficient

to obtain very good classification results, although us-

ing all the available features produces slightly better

results. Furthermore, we evaluated our classifier in an

operational setting. Namely, we used the entire labeled

dataset described above to train our network classifier,

and then we used the obtained classifier to classify

new (i.e., not seen during training) clusters of domains

obtained in the first 14 days of April. During this period

we obtained an average of 448 clusters per day (again,

considering only clusters for which φ1 > 10), 26 of

which (in average per day) where classified as being

related to flux service networks. We manually verified

that the classifier correctly labeled clusters related to

malicious flux networks with very few false positives,

thus confirming the results reported in Table I. Overall,

during the entire 45 days period of evaluation, between

March 1 and April 14, 2009, we detected an average

of 23 malicious flux service networks per day, with a

total of 61,710 flux domain names and 17,332 distinct

IP addresses related to flux agents.

D. Can this Contribute to Spam Filtering?

In this Section we analyze to what extent the informa-

tion about malicious flux networks passively gathered at

the RDNS level using our detection system can benefit

spam filtering applications. In particular, we focus on

detecting whether domain names found in spam emails

are somehow related to malicious flux networks detected

by our system. Assume a mail server receives an email

which contains a link to a certain website, performs a

DNS query for the domain name embedded in the link,

and forwards the email to the spam filter along with the

obtained set, say Rf , of resolved IP addresses. At this

point the spam filter can inspect the content of the email,

and also check if there is any intersection between the

set Rf and any of the malicious flux networks identified

by our detection system. If a significant intersection

(i.e., common IP addresses) is found, the spam filter can

increase the spam score related to the email, and use this

information for making a more accurate overall decision

about whether the received email should be classified as

spam or not. The intuition is that if the domain name

of the website advertised via email points to one or

more previously detected flux agents, it is very likely

that the content of the advertised website is malicious.

A similar spam detection process may be used for

types of spam different from email spam. For example,

using a browser plug-in this spam detection process

may be extended to identify blog spam, social network

0.0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018
False Positive Rate % (Alexa TOP domains)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

D
e
te

c
ti

o
n

 R
a
te

 %

Day 2009-03-04, 33697 spam domains
Day 2009-03-06, 105608 spam domains
Day 2009-03-10, 103554 spam domains
Day 2009-03-15, 168298 spam domains

Figure 3: Detection of domains in spam emails.

spam, etc., before the users access the malicious content.

Therefore, it is easy to see that the output of our

malicious flux detection system may contribute to a

number of different spam filtering applications.

In order to measure to what extent our detection

system may benefit email spam filtering, we proceeded

as follows. We obtained a feed of URLs extracted from

spam emails captured by a mid-size email spam-trap

during a period of 30 days, between March 1 and March

30, 2009. This feed provided us with an average of

250,000 spam-related URLs per day, from which we

extracted about 86,000 new (i.e., never seen before)

domain names per day. Let Dk+1 be the set of spam-

related domain names collected on day k + 1, S
(d)
k+1 be

the set of resolved IPs obtained by performing one DNS

query for domain d ∈ Dk+1, and R̂
k
k−l be the overall set

of IP addresses of flux agents detected by our malicious

flux network detection system in the period from day

k− l to day k. In order to obtain a suspiciousness score

s(d) for domain d, we use the similarity metric defined

in Equation 1 to compute s(d) = sim(S
(d)
k+1, R̂

k
k−l),

i.e., the degree of overlap between the resolved IPs of

domain d and the malicious flux networks we were able

to detect from RDNS traffic. If the value s(d) exceeds

a predefined threshold θ, we classify the domain name

d as malicious, otherwise we classify it as legitimate.

We repeat this process for each spam-related domain

name d ∈ Dk+1 to estimate the detection rate of the

proposed approach, namely the percentage of spam-

related domain names that may be identified by a spam

filter. Furthermore, we considered the list of domain

names related to the top 50,000 most popular web sites

according to Alexa (www.alexa.com) to estimate the

false positives that may be generated by our detection

approach. Let A be the set of these popular websites.

For each domain α ∈ A, we perform a DNS query

and collect the set resolved IP addresses R
(α), and we

compute the similarity score s(α) = sim(R(α), R̂k
k−l).

Again, if s(α) > θ we classify α as malicious. In

our experiments, we assume the domain names in the

9

set A are legitimate/non-flux domains. Therefore, any

domain α for which s(α) > θ is considered as a false

positive. Figure 3 reports the ROC curves (i.e., the trade-

off between false positive and detection rate) obtained

by varying the detection threshold θ, using a fixed

value of l = 2, and for four different value of k (i.e.,

four different days). It is easy to see that the detection

approach described above produces a detection rate of

domain names advertised through spam emails between

90% to 95%. It is worth noting that not all of the

detected malicious domains are necessarily fast-flux

domains. We noted that several of the domain names

detected as malicious did not appear to have a “fluxing”

behavior themselves, but resolved to a fixed set of IP

addresses that partially intersected with the IP addresses

of flux agents we detected from our passive analysis of

RDNS traffic. A more detailed analysis revealed that

these fixed sets of flux agents consisted of machines

with a high average uptime. Therefore, we speculate that

highly reliable compromised machines may be used as

part of larger flux service networks, as well as “stand-

alone” providers of malicious content. It is also worth

noting that the false positive rate of our approach for

detecting spam-related malicious domains is less than

0.002%. This confirms that our malicious flux network

detection system is a very promising approach and may

substantially benefit spam filtering applications.

IV. CONCLUSION

In this paper we presented a novel, passive approach

for detecting malicious flux service networks in-the-

wild. Our detection system is based on passive analysis

of recursive DNS (RDNS) traffic traces. Contrary to

previous work, our approach is not limited to the

analysis of suspicious domain names extracted from

spam emails or precompiled domain blacklists. Instead,

we are able to detect malicious flux service networks as

they are accessed by users who fall victims of malicious

content advertised through different forms of spam. We

experimented with the RDNS traffic passively collected

at two large ISP networks, and showed that the proposed

approach is able to accurately detect malicious flux

service networks. Furthermore, we showed how our

passive detection and tracking of malicious flux service

networks may benefit spam filtering applications.

ACKNOWLEDGMENTS

We would like to thank Giorgio Giacinto and the

anonymous reviewers for their helpful comments on

earlier versions of this paper.

This material is based upon work supported in part

by the National Science Foundation under grants no.

0716570 and 0831300, the Department of Homeland

Security under contract no. FA8750-08-2-0141, the Of-

fice of Naval Research under grant no. N000140911042.

Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the

authors and do not necessarily reflect the views of

the National Science Foundation, the Department of

Homeland Security, or the Office of Naval Research.

REFERENCES

[1] A. P. Bradley. The use of the area under the ROC curve in the

evaluation of machine learning algorithms. Pattern Recognition,

30(7):1145–1159, 1997.

[2] R. Dugad and N. Ahuja. Unsupervised multidimensional hier-

archical clustering. In International Conference on Acoustics,

Speech and Signal Processing, 1998.

[3] T. Holz, C. Gorecki, K. Rieck, and F. Freiling. Measuring and

detecting fast-flux service networks. In Network & Distributed

System Security Symposium, 2008.

[4] X. Hu, M. Knysz, and K. G. Shin. Rb-seeker: Auto-detection of

redirection botnets. In Network & Distributed System Security

Symposium, 2009.

[5] A. K. Jain and R. C. Dubes. Algorithms for clustering data.

Prentice-Hall, Inc., 1988.

[6] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a

review. ACM Comput. Surv., 31(3):264–323, 1999.

[7] M. Konte, N. Feamster, and J. Jung. Dynamics of online

scam hosting infrastructure. In Passive and Active Measurement

Conference, 2009.

[8] J. Nazario and T. Holz. As the net churns: Fast-flux botnet

observations. In International Conference on Malicious and

Unwanted Software, 2008.

[9] E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi. Fluxor:

Detecting and monitoring fast-flux service networks. In Detec-

tion of Intrusions and Malware, and Vulnerability Assessment,

2008.

[10] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers, 1993.

[11] SSAC. SAC 025 - SSAC advisory on fast flux hosting and DNS,

2008.

[12] The Honeynet Project. Know your enemy: Fast-flux service

networks, 2007.

APPENDIX

In the additional filtering step F3, we apply the fol-

lowing filtering rules (see Section II-D for the notation),

where the subscript E indicates that the quantities are

measured at the end of an epoch E = 1 day:
F3-a) TE < 30 F3-b) |R

(d)
E

| > 10

F3-c) |G
(d)
E

| > 5 F3-d) |R
(d)
E

| > 5 AND pE > 0.8

F3-e) pE > 0.5 AND TE 6 3600 AND |G
(d)
E

| > 10

10

