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Abstract. Diversity is deemed a crucial concept in the field of multiple
classifier systems, although no exact definition has been found so far.
Existing diversity measures exhibit some issues, both from the theoretical
viewpoint, and from the practical viewpoint of ensemble construction.
We propose to address some of these issues through the derivation of
decompositions of classification error, analogue to the well-known bias-
variance-covariance and ambiguity decompositions of regression error.
We then discuss whether the resulting decompositions can provide a
more clear definition of diversity, and whether they can be exploited
more effectively for the practical purpose of ensemble construction.
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1 Introduction

The concept of “diversity” is deemed among the most important in the field of
multiple classifier systems (MCSs), both theoretically, as a way to understand
how MCSs work, and as a practical tool for constructing effective classifier en-
sembles [21, 46]. However, its exact understanding and definition is still a rele-
vant open issue. For instance, quoting from [46] (Sect. 5.1): “It is no doubt that
understanding diversity is the holygrail in the field of ensemble learning”.

Besides the obvious observation that combining identical classifiers is useless,
the concept of diversity has roots in theoretical arguments (e.g., [36, 22, 15, 9]),
also inspired by other domains like software engineering [24, 28]. In particular, it
has been influenced by the bias-variance-covariance (BVC) [37] and the ambi-
guity [18, 4] decompositions of the error of regressor ensembles. Moreover, wide
empirical evidence motivates the potential usefulness of combining non-identical
classifiers. This lead to the widely accepted idea that: (i) there exists a property
of MCSs that can be defined as “diversity”, can be quantitatively defined and
thus measured, and is related to ensemble accuracy (together with the accu-
racy of individual classifiers); (ii) such a property can be practically exploited
to construct an effective ensemble of classifiers.
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The concept of diversity has been investigated in the MCS literature from
different aspects: several diversity measures have been defined (e.g., [17, 26, 8,
13, 32, 20, 1, 40, 23]); several methods for MCS construction have been proposed,
explicitly using diversity measures (e.g., [41, 13, 1, 2, 16, 40, 23]); existing diversity
measures have been analysed to understand whether and how much they are
“correlated” with ensemble accuracy [32, 20, 35]; several authors analysed the
concept of diversity itself [31, 19, 4, 5, 7].

However, although all the existing measures reflect intuitive notions of diver-
sity, none of them has been derived from an exact decomposition of the ensemble
error, contrary to the ambiguity decomposition; none of them exhibits a clear
trade-off with the average error of ensemble members, in determining the en-
semble error [20, 35]; and effective techniques for MCS construction like bagging
and boosting do not make explicit use of diversity measures. These issues led
some authors even to question the practical usefulness of measuring diversity in
MCSs: “[...] the question of the participation of diversity measures in designing
classifier ensembles is still open. Directly calculating the accuracy for the chosen
combination method makes more sense than calculating the diversity and trying
to predict the accuracy. Even if the measure of diversity is easier to calculate
than some combination methods, the ambiguous relationship between diversity
and accuracy discourages optimising the diversity” [32] (sect. 7); “The quest for
defining and using diversity might be heading toward a dead end or might result
in powerful new ensemble-building methodologies” [21] (sect. 10.5); “It is not
yet known whether diversity is really a driving force, or actually a trap since it
might be just another appearance of accuracy” [46] (sect. 5.1).

On the basis of the above premises, in this paper we address the issue of
diversity with the following goals: (i) deriving exact decompositions of the en-
semble error for any combining rule and any number of classes; and exploiting
them to understand (ii) whether they can provide a more clear understanding
of diversity, and (iii) whether they can be exploited for ensemble construction,
more effectively than existing measures. After an overview on BVC and ambi-
guity decompositions for regression problems in Sect. 2, in Sect. 3 we address
issue (i) above by deriving the analogue of these decompositions for the ensemble
classification error. In particular, we consider the Kohavi-Wolpert bias-variance
decomposition [17] to derive a BVC-like decomposition, while our ambiguity-
like decomposition generalises the one of [7]. We then address issues (ii) and (iii)
above in Sect. 4. We finally suggest some directions for future work in Sect. 5.

2 Background: decompositions of regression error

In regression problems, an unknown function has to be estimated using a set
d of n samples of its input-output pairs, (x, y) ∈ Rm × R.1 Assume that a
learning algorithm is used, which produces the estimator f(x; d) when trained
on d. To simplify notation, in the following we will write f in place of f(x; d).

1 Throughout the paper we will use uppercase letters to denote random variables, and
the corresponding lowercase letters to denote specific values.
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The expectation of the mean squared error (MSE) of f on a given input x, taken
over random training sets D of size n and over P [Y |x], can be written in terms
of the well-known bias-variance (BV) decomposition [12]:

ED,Y |x

[
(f − Y )

2
]

= bias2f + varf + noise , (1)

where noise equals the variance of Y given x, and is independent on D, while

bias2f = (ED[f ]− E[Y |x])
2
, varf = ED

[
(f − ED[f ])2

]
. (2)

It is known that, usually, bias can be reduced only at the expense of a higher vari-
ance, and vice versa, and that an effective variance reduction technique consists
of linearly combining an ensemble of N different regressors:

fens(x; d) =
1

N

N∑
i=1

fi(x; d) . (3)

The BV decomposition of fens can be rewritten in the form of a bias-variance-
covariance (BVC) decomposition [37, 4]. Let us define

bias = 1
N

∑
j biasfj , var = 1

N

∑
j varfj ,

cov = 1
N(N−1)

∑
i,j 6=iED [(fi − ED[fi])(fj − ED[fj ])] .

(4)

It then follows that:

ED[(fens − E[Y |x])2] = bias
2

+
1

N
var + (1− 1

N
)cov . (5)

This highlights that the variance reduction effect strongly depends on the amount
of correlation between the outputs of individual regressors: the lower the corre-
lation (i.e., the lower the term cov, which can also be negative), the higher the
reduction of variance.

The MSE of fens can also be written equivalently in terms of the ambiguity
decomposition, which, for a given (x, y) and d, is given by [18, 4]:

(y − fens)2 =
1

N

N∑
i=1

(y − fi)2 −
1

N

N∑
i=1

(fi − fens)2 . (6)

Differently from the BVC decomposition, the ambiguity decomposition high-
lights a trade-off between the average accuracy of individual regressors, and
their deviation from the ensemble output. The latter term was called “ambigu-
ity” (hence the name of the decomposition),2 and can be easily interpreted in
terms of diversity between individual regressors. Therefore, this provides a clear,
formal definition of “diversity” for regression problems [4].

2 The ambiguity term is related to the correlation among individual regressors. The
beneficial effects of negative correlation had already been pointed out in [29].
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From the practical viewpoint of ensemble construction, the ambiguity decom-
position was successfully exploited by the Negative Correlation Learning (NCL)
method [25].3 NCL is a parallel, gradient-descent learning algorithm, whose ob-
jective function is given by the linear combination of the MSE of individual
regressors (the first term of the ambiguity decomposition), minus a term pro-
portional to the corresponding ambiguity. Instead of independently training the
individual regressors first, and then computing the coefficients of their linear
combination, NCL pursues both goals simultaneously. This may allow it to at-
tain a better trade-off between accuracy and diversity.

In principle, the ambiguity decomposition could also be exploited in the
context of an overproduce and choose strategy, for selecting the best subset
of regressors s′ out of a given, larger set s. The members of s can be first
independently trained (by minimising their individual MSE); then, the subset
s′ exhibiting the highest ambiguity should be selected. However, all works on
regressor ensemble selection we are aware of did not use this approach, but relied
on the direct estimate of the ensemble MSE [43, 30, 14, 39, 27, 34, 38], with the
only exception of [11]. However, in [11] diversity measures inspired by the ones
defined for classification problems were used, instead of the clean ambiguity term.
The above overproduce and choose strategy, implemented by maximising some
diversity measure, is used by several classifier ensemble construction techniques,
instead. We will further discuss this point in Sect. 4.

3 Decompositions of the Ensemble Classification Error

Several BV decompositions of classification error have been proposed, e.g., [3,
17, 10], and have been used to empirically investigate the variance (and some-
times bias) reduction effect of classifier combination techniques. However, no
decomposition analogue to BVC (i.e., explicitly including the outputs of indi-
vidual classifiers) has been derived yet. This is not straightforward, for instance
because the concept of covariance is undefined for categorical outputs (class
labels), as pointed out in [4]. Similarly, no ambiguity-like decomposition (i.e.,
including the average error of individual classifiers) has been derived for MCSs,
with the only exception of the one of [7] for two-class problems. Accordingly,
existing diversity measures have not been derived from exact decompositions of
classification error. However, we point out that they have been empirically and
theoretically analysed by investigating whether and how their trade-off with the
average error of individual classifiers is related to the ensemble error. In other
words, they have been (often implicitly) considered as the equivalent of the am-
biguity term in the corresponding decomposition (6).

In the following we show how an analogue of the BVC decomposition can be
derived, as well as the analogue of the ambiguity decomposition, which gener-
alises the one of [7] to any number of classes.

3 NCL was actually defined “heuristically” in [25], with no reference to the ambiguity
decomposition. The strong relationship between NCL and the ambiguity decompo-
sition was pointed out and thoroughly analysed in [5].



Diversity in MCSs: fertile concept or dead end? 5

3.1 A Bias-Variance-Covariance Decomposition for Classifier
Ensembles

We consider the Kohavi-Wolpert BV decomposition of classification error (0/1-
loss), for a L-class problem [17]. We denote class labels by y1, . . . , yL. To further
simplify the notation, we define: P [yi] = P [Y = yi|x], and P̂ [yi] = PD[f(x;D) =
yi]. The loss of a classifier f(x; d) on a given sample (x, y), which we denote by
e(x, y; d), equals I[f(x; d) 6= y], where I[a] = 1 (0), if a = True (False). Bias and
variance are defined in [17] as follows:

biasf =
1

2

∑
yi

(
P [yi]− P̂ [yi]

)2
, varf =

1

2

(
1−

∑
yi

P̂ [yi]
2

)
. (7)

It follows that [17]:

ED,Y |x[e(x, Y ;D)] = biasf + varf + noise , (8)

where noise = 1
2

(
1−

∑
yi
P [yi]

2
)

.

We now rewrite the above bias and variance terms for a MCS {f1, . . . , fN}.
We denote by fens the ensemble output, with no restriction on the combining
rule. Adding and subtracting to the expressions of biasfens and varfens the two
terms indicated below, after some manipulations we obtain:

biasfens
= 1

2

∑
yi

(
P [yi]− 1√

N

∑
j P̂j [yi] + 1√

N

∑
j P̂j [yi]− P̂ens[yi]

)2
= bias+ b,

varfens
= 1

2

(
1− 1

N2

∑
j,yi

P̂ 2
j [yi] + 1

N2

∑
j,yi

P̂ 2
j [yi]−

∑
yi
P̂ens[yi]

2
)

= 1
N var + v ,

(9)

where bias = 1
N

∑
j biasfj , var = 1

N

∑
j varfj , and the terms b and v are given

in the online appendix of this paper4 (they are not reported here due to lack of
space). This easily leads us to the analogue of the BVC decomposition (5):

ED,Y |xeens(x, Y ;D) = bias+
1

N
var + b+ v + noise . (10)

The term b+ v corresponds to the covariance term of (5), and its interpretation
is under analysis at the time of submitting the camera-ready of this paper.

3.2 Ambiguity-like Decomposition for Classifier Ensembles

The only decomposition of the classification error (0/1-loss) of an ensemble,
analogue to the ambiguity decomposition, has been derived in [7], for two-class
problems. Denoting the class labels by the values {−1,+1}, the loss of a classifier

4 http://prag.diee.unica.it/pra/bib/didaciMCS2013
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on a sample (x, y) can be expressed as ef (x, y; d) = 1
2 (1 − y × f). Denoting by

e(x, y; d) the average loss of an ensemble of N classifiers, it follows that [7]:

eens(x, y; d) = e(x, y; d)− y × fens ×
1

N

N∑
j=1

δj(x, y; d) , (11)

where δj(x, y; d) = 1
2 (1− fj × fens). This term is a measure of the disagreement

between classifier fj and the ensemble. The decomposition (11) appears thus
very similar to the ambiguity decomposition (6). However, the second term in
the right-hand side (RHS) of (11) also includes the true class label y, contrary
to the ambiguity term in (6). The interpretation of decomposition (11) is very
clear: it shows that a lower average accuracy of individual classifiers can be
compensated by a higher disagreement with the ensemble, as far as the ensemble
remains correct. This latter condition is due to the presence of the y term in the
RHS of (11). We point out that decomposition (11) is valid for any combining
rule, although in [7] only majority voting was considered.

Here we show that a more general decomposition can be obtained, for any
number of classes. To this aim, we can exploit the BVC-like decomposition (10).
We denote the expected average misclassification probability of individual clas-

sifiers on a point x, ED,Y |x

[
1
N

∑
j ej(x, y; d)

]
, by e(x). It is easy to see that

e(x) = bias + var + noise. Rewriting (10) by adding and subtracting the term
N−1
N var, after some manipulations we obtain:

eens(x) = e(x)−
∑

yi
P [yi]

1
N

∑
j

(
P̂ens[yi]− P̂j [yi]

)
= e(x)− 1

N

∑
j

(
PD,Y |x[fens = Y |x]− PD,Y |x[fj = Y |x]

)
.

(12)

The same result can also be obtained by directly computing
ED,Y |x[eens(X, Y ;D) − e(X, Y ;D)], which is the approach followed in [7]. Ob-
viously, for L = 2, the expectation of (11) with respect to D,Y |x equals (12).

We can further rewrite decomposition (12) in the case of a fixed training set
d, i.e., by taking the expectation of eens(x, y; d) with respect of P [Y |x] only:

eens(x; d) = e(x; d)− 1

N

∑
j

(
PY |x[fens = Y |x]− PY |x[fj = Y |x]

)
. (13)

In particular, for a single sample (x, y) and a single training set d, we obtain
the generalisation of (11) for L > 2:

efens
(x, y; d) = e(x, y; d)− 1

N

∑
j

(I[fens = y]− I[fj = y]) . (14)

Expressions (12)–(14) are thus three different versions of a general ambiguity-
like decomposition of the ensemble error, that is valid for any number of classes
and any combining rule.5 Comparing (12) to the BVC-like decomposition (10), to
understand the correspondence between their terms (as done in [4] for regression
error), is the subject of our ongoing work.

5 This decomposition can also be easily extended to any loss function.
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4 Discussion

Let us recall the second and third issues mentioned in the introduction. Can the
second term of decomposition (12)–(14) be interpreted as a diversity measure?
Can it be practically exploited for ensemble construction? In particular, is it more
effective than existing diversity measures, and than the direct estimate of the
ensemble error, e.g., in terms of estimation reliability, computational complexity,
or the possibility of estimating it using unlabelled samples only? We address
these issues in the following.

4.1 Interpretation of the ambiguity-like decomposition

For two-class problems, the second term in the RHS of decomposition (11) can
be interpreted as a diversity measure, in terms of the disagreement between the
individual classifiers and the ensemble [7], similarly to the ambiguity term in
(6). In the general case when L > 2, it is easy to see that a similar interpretation
can be given for the second term in the RHS of decomposition (14). However,
for L > 2 the disagreement is not expressed in terms of the class labels, but in
terms of the correctness of such choices (they coincide only when L = 2).

In [7] the decomposition (11) was further analysed by considering the case of
zero Bayes error (i.e., when y is a deterministic function of x), and by taking the
expectation of (11) over P [X], which gives the error probability of the ensemble.6

Taking into account that y × fens = +1 (−1) when the ensemble is correct
(wrong), and denoting by x+ and x− the corresponding regions in feature space,
one obtains [7]:

eens(d) = e(d)−
∫
x+

1

N

N∑
j=1

δj(x; d)dx +

∫
x−

1

N

N∑
j=1

δj(x; d)dx . (15)

This highlights that increasing the disagreement is beneficial on samples where
the ensemble is correct, while it is detrimental on samples where the ensem-
ble is wrong. Accordingly, the corresponding diversity components were named
respectively “good” and “bad” diversity in [7].

It is now easy to see that the same interpretation can be given when L > 2,
from decomposition (14), provided that “disagreement” is intended as explained
above. On samples where the ensemble is correct, increasing the disagreement
is beneficial, i.e., the highest number of individual classifiers should misclassify
such samples, independently on the specific class labels they choose. Increasing
the disagreement is detrimental on samples misclassified by the ensemble, in-
stead: this means as well that the highest number of individual classifiers should
misclassify such samples. Accordingly, the concept of good and bad diversity
can be extended to L > 2, by considering the above definition of disagreement.

6 This analysis can be easily extended to the case of non-zero Bayes error.
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4.2 Practical exploitation of diversity measures

Here we discuss the practical usefulness of diversity measures, including the di-
versity term of the ambiguity-like decomposition (14), for ensemble construction.

We first point out that the diversity term in (14) depends on the specific
combining rule. This is a consequence of the fact that the error of a given en-
semble depends on the combining rule, and that the first term in the RHS of (14)
is the average error of ensemble members. However, existing diversity measures
do not depend on the combining rule. Actually, although they are not explicitly
tailored to a specific rule, most of them seem related to majority voting [35].
Even interesting measures recently proposed, using information theory, do not
take into account the combining rule [6, 44]. The pros and cons of using a single
diversity measure for all combining rules, and of using different measures tailored
to specific rules, have been discussed in [21] (sect. 10.5): “The problem is that
the ‘clean’ diversity measure might be of little use due to its weak relationship
with the ensemble accuracy [...]. On the other hand, the more we involve the
ensemble performance into defining diversity, the more we are running onto the
risk of trying to replace a simple calculation of the ensemble error by a clumsy
estimate that we call diversity.’

On the other hand, as pointed out in Sect. 3, existing measures are usually
considered as the equivalent of the ambiguity term in regression. Indeed, they
have often been analysed by investigating whether and how their trade-off with
the average error of individual classifiers is related to the ensemble error, but no
clear correlation has been found [32, 20, 35]. This raised some doubts about the
usefulness of existing measures for ensemble construction. Some authors even
argued that a direct estimation of ensemble accuracy can be more effective. For
instance, see the quote from [32], reported in Sect. 1; and: “In our opinion, the
existing diversity measures are [...] not [sufficient] for [selecting base classifiers]”
[35] (sect. 4). Such doubts are strengthened by the following fact: overproduce
and choose methods for ensemble construction, that make explicit use of diversity
measures, did not provide evidence that such an approach is more effective than
directly estimating ensemble accuracy [41, 13, 1, 2, 16, 40]. In particular, besides
[41, 40], where such a comparison has not been made, in [13, 1, 2] the use of
diversity measures did not provide any significant accuracy improvement, and
in [16] the direct estimation of classifier accuracy turned out to significantly
outperform the use of diversity measures.

Consider now the exact decomposition of the ensemble error (14), or the
equivalent (for two-class problems) decomposition (11). Can their diversity terms
be exploited more effectively in the context of overproduce and choose methods?
At least at a first glance, the answer seems negative. The reason is that to
compute these diversity terms (on a given set of samples, e.g., a validation set)
one needs to know both the ensemble output and the correct class label of
each sample. However, this also allows one to directly estimate the ensemble
accuracy. We point out that a similar issue arises about the use of the ambiguity
decomposition for regression problems as well, as mentioned in Sect. 2. However,
even though computing the ambiguity term in (6) is not computationally cheaper
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than directly computing the ensemble MSE, the former does not involve the
correct output y, which allows one to compute it using also unlabelled samples.
It would be interesting to investigate whether this can be actually advantageous.
It is worth noting that the use of unlabelled samples to promote diversity in
MCSs has been suggested in [42].

Consider now the use of diversity measures for ensemble construction strate-
gies analogue to NCL, i.e., for directly constructing a MCS without overproduc-
ing first, and then selecting a subset of classifiers. In this context, it is pertinent to
note that well-known MCS construction techniques like bagging, random forests,
random subspace, and AdaBoost, are effective even though they do not explicitly
use any diversity measure (see, e.g., [21], chapter 10). By the way, they are all
tailored to majority voting (or weighted voting, in the case of AdaBoost) [35]. On
the one hand, it is commonly believed that such techniques “can be interpreted
as building diverse base classifiers implicitly” [35]. This fact has also inspired the
idea of investigating what objective function, and thus, what diversity measure,
is implicitly optimised by such techniques.7 On the other hand, the above dis-
cussion about existing measures and about the diversity terms in (14) and (11),
strengthens the doubt that they are not more useful in practice than directly
estimating ensemble accuracy. Indeed, they seem only “descriptive”, i.e., they
formalise the intuition that (at least for the majority voting rule) an effective
ensemble is made up of classifiers that are accurate “enough” on different regions
of the feature space, such that (ideally) a majority of them correctly classifies
each sample. This is exactly the goal that techniques like bagging pursue, us-
ing different strategies, without explicitly relying on diversity measures. To our
knowledge, the only method analogue to NCL proposed so far (besides the direct
use of NCL with base classifiers like neural networks) is the one of [45]. It simul-
taneously trains a set of two-class linear classifiers, and computes the weights
of their linear combination, using a SVM-like learning algorithm. The objective
function aims at jointly maximising individual accuracy and diversity. Diversity
is measured as the average pairwise disagreement between individual classifiers.
This method exhibited comparative performance with bagging and AdaBoost.
On the other hand, the considered diversity measure does not coincide with the
ambiguity term (11). A further investigation of this method is thus interesting.

To sum up, existing diversity measures are at most an approximation of the
“real” diversity term, in the context of exact decompositions of the ensemble
error like (14) and (11), in which the first term is given by the average error
of ensemble members. On the other hand, the practical usefulness of diversity
measures, even exact ones, remains questionable. In the next section we will
indicate possible research directions to address this issue.

7 Zhi-Hua Zhou, MCS 2010 panel discussion: http://www.diee.unica.it/mcs/

mcs2010/paneldiscussion.html
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5 Suggestions for future research

On the basis of the above results and discussion, we conclude this paper by
suggesting some research directions, aimed at better understanding whether the
explicit use of diversity measures can be useful in practice, for ensemble con-
struction.

1. The BVC-like decomposition (10), and in particular the term corresponding
to covariance, deserves further analysis. A comparison with the ambiguity-
like decomposition (12) is interesting, to understand the correspondence be-
tween their terms, as done in [4] for the BVC and ambiguity decompositions
of regression error.

2. The ambiguity-like decomposition (12) should be extended to loss functions
different than 0/1. It should also be further analysed with respect to specific
combining rules, different from majority voting (which has been considered in
[7]). In particular, it would be interesting to investigate whether the average
error of individual classifiers is the most suitable as the first term of such a
decomposition, for any combining rule.

3. The effectiveness of explicitly using diversity measures in ensemble con-
struction methods with the overproduce and choose strategy, should be
thoroughly compared with the direct estimation of ensemble accuracy. This
should be done also for regression problems, where the ambiguity term seems
in principle more advantageous than the corresponding one for classification
problems.

4. It is also interesting to compare the diversity terms derived from exact de-
compositions of the ensemble error like (14) and (11), with existing diversity
measures. This can help understanding which of these measures is a bet-
ter approximation to the “real” diversity, also with respect to a specific
combining rule. This could even suggest new diversity measures that better
approximate the “real” one, and are also of practical use.
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