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Abstract. In this paper we propose an Intrusion Detection System
(IDS) for the detection of attacks against a web server. The system ana-
lyzes the requests received by a web server, and is based on a two-stages
classification algorithm that heavily relies on the MCS paradigm. In the
first stage the structure of the HTTP requests is modeled using several
ensembles of Hidden Markov Models. Then, the outputs of these ensem-
bles are combined using a one-class classification algorithm. We evaluated
the system on several datasets of real traffic and real attacks. Experimen-
tal results, and comparisons with state-of.the.art detection systems show
the effectiveness of the proposed approach.
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1 Introduction

The always increasing number of Web-based applications that are deployed
worldwide, makes their protection a key topic in computer security. The tradi-
tional defense systems (e.g. Intrusion Detection/Prevention Systems) are based
on a database of signatures that describe known attacks. Unfortunately, the large
number of new attacks that appears everyday, and the wide use of custom appli-
cations on web servers, make almost impossible to have signature-based systems
always updated to the most recent and effective attacks. A possible solution to
this problem is offered by the “anomaly based” approach to intrusion detection.

An anomaly based system builds a model of the “normal” behavior of the
resource to be protected. An attack pattern is detected if it appears “anomalous”
with respect to the normal behavior, that is if it significantly deviates from the
statistical model of the normal activity. The normal behavior is defined as a set
of characteristics that are observed during normal operation of the resource to
be protected, e.g., the distribution of the characters in a string parameter, the
mean and standard deviation of the values of integer parameters [[6], [7]]. One of
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Fig. 1. An example of legitimate HTTP payload
GET /pra/ita/home.php HTTP/1.1 =⇒ Request-Line

Host: prag.diee.unica.it

Accept: text/*, text/html =⇒ Request-Headers

User-Agent: Mozilla/4.0

the reasons that initially prevented anomaly-based IDS from becoming popular
is the fact that they tend to generate too high rates of false alarms. In fact the
false alarm rate is a crucial parameter in the evaluation of an IDS since an IDS is
generally required to manage large amounts of patterns (hundreds of thousands)
every day. A strategy which is usually employed to mitigate this problem is that
of realizing IDSs based on multiple classifiers in order to increase the overall
classification accuracy [[2],[6],[7],[9],[11]].

The anomaly based IDS recently proposed in the literature for the protection
of web servers and web applications basically analyze the requests received by
the web server. HTTP requests are carried in the data portion of the network
packet that is generally called “HTTP payload”. An example of HTTP payload is
presented in Figure 1. The HTTP protocol is defined by RFC 2616 [1]. According
to this RFC, a HTTP payload contains a Request-Line plus a certain number of
Request-Header fields. More in detail:

– The Request-Line begins with a method token (e.g. POST, GET), followed
by the Request-URI and the protocol version, and ending with CRLF. The
Request-URI contains the name of the resource requested on the web server.
In Figure 1 the resource requested is the page /pra/ita/home.php.

– The Request-Header fields are used by the client to provide additional infor-
mations to the web server. For example, with the User-Agent header, the
client host notifies to the web server the type and the version of the web
browser. This information can be used by the web server to optimize the
response sent back to the client according to the version of the browser. In
Figure 1 the value of the User-Agent header is Mozilla/4.0.

Anomaly based IDS use statistical models to represent and analyze HTTP re-
quests. Basically they create a statistical model of the bytes’ distribution within
the payload. Some of them, such as HMM-Web [5] or Spectrogram [11], focus on
the Request-Line only and perform an analysis based on Hidden Markov Models
(HMM), and on Mixture of Markov-chains respectively. Other approaches, such
as PAYL [13] and HMMPayl [2] analyze the bytes’ distribution of the whole
payload using n − gram − analysis or HMM. These IDSs are based on the as-
sumption that the bytes’ statistics of HTTP payloads containing attacks are
different from the bytes’ statistics of the legitimate traffic. Nevertheless, at the
best of our knowledge, none of the IDSs proposed in the literature, exploits the
a-priori knowledge of the structure of the HTTP payload.

In this paper, we propose an IDS based on HMM that effectively exploit the
analysis of the different portions of the HTTP payload structure. In particular,
for each header of the payload, we use a different ensemble of HMM to analyze the
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related values. Another ensemble of HMM is used to analyze the Request-Line.
Attack detection is performed by stacking the outputs of the HMM ensembles,
and using this vector as input for a one-class classifier. The experimental results
achieved on several datasets of legitimate traffic and attacks confirm the effec-
tiveness of the proposed approach, and its superiority with respect to similar
IDS proposed in the literature.

The rest of the paper is organized as follows. In section 2 a review of the State
of Art is provided. In Section 3 a detailed description of the IDS is provided. In
sections 4 and 5 we describe respectively the experimental setup and results. We
then draw the conclusions in section 6.

2 State of the Art

In the recent years, several anomaly based IDS have been proposed for the
protection of web servers and web applications. They usually rely on multiple
classifiers or models for two main reasons. First, multiple classifiers generally
lead to better classification accuracy. In the case of IDSs, this means an higher
percentage of detected attacks and a smaller percentage of false alarms. Ex-
amples of applications of Multiple Classifiers are [[2],[6],[7],[9],[11]]. The second
reason for using multiple classifiers is that they usually increase the robustness
of the system against attempts of evasion. This topic is gaining an increasing
attention in the last years not only in the Intrusion Detection area but also in
related fields such as spam detection and biometric authentication [4, 8].

Intrusion detection techniques such as those proposed in [[5],[7],[11]] limit
their analysis to the structure of the Request-Line, and in particular they focus
on the value of the input parameters received by the web applications. These
approaches are tailored for the detection of the most frequent attacks against
web applications, e.g., SQL-Injection, Cross-Site Scripting, that basically exploit
the flaws of the web applications in the validation of the received input. Never-
theless, these IDS are completely ineffective against attacks that exploit other
vulnerabilities of web applications.

IDS such as [[2],[9],[13]] cover a broader range of attacks since they model the
bytes’ distribution of the whole payload. As a consequence, they are theoreti-
cally able to detect any kind of attack that makes the payload statistics deviating
from those of the legitimate traffic. The bytes’ distribution of the payload can
be modeled in several ways. PAYL [13] performs an n − gram analysis using a
very small value for n, since the size of the features space exponentially increases
with n. This represent a severe limitation for PAYL since the IDS can be easily
evaded if the attacker is able to mimic the statistics of the legitimate traffic.
HMMPayl performs an analysis of the payload based on HMM. This analysis is
equivalent to the n− gram analysis, but it is able to circumvent the limitation
on the value of n from which PAYL suffered. This lead to an increased classifi-
cation accuracy of HMMPayl with respect to PAYL. Nevertheless, the analysis
performed by HMMPayl is quite complex. This might be an issue since an IDS
such as HMMPayl must be able to keep up with the network speed. For this
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reason, in this paper we propose to exploit the a-priory knowledge of the pay-
load structure in order to significantly reduce the complexity of the classification
algorithm without affecting the classification accuracy.

The largest part of the IDSs proposed in the literature are based on outliers
detection techniques, and one-class classifiers. This means that the classifiers, or,
more in general, the statistical models on which they are based, are built using
samples of legitimate patterns only. There are various reasons for this choice.
First of all, the main aim of anomaly based IDS is to recognize those patterns
that are anomalous with respect to those assumed to be legitimate. In addition,
a two-class model (normal vs. attack) would not be probably the one that best
fits the problem. In fact the attack class would contain patterns that are com-
pletely different each other, as they exploit vulnerabilities of different type and,
as a consequence, they exhibit statistical properties that are completely different
[2]. Another (and more “practical”) reason for using one-class classifiers is that
collecting representative samples of the attack class is usually quite difficult. In
fact, the attacks a web server might be susceptible to, depend on several ele-
ments such as the platform (e.g. the operating system), the hosted applications,
the network topology, and so on. One could certainly scan the web server and
analyze the web applications looking for possible vulnerabilities, and then cre-
ate samples of attacks that exploit them. Nevertheless, the assessment of all the
possible attacks a web server might be subject to, remains a task quite difficult
and time consuming. If such a knowledge should be available, then there would
be better ways to protect against known attacks than training a classifier, that
is patching the vulnerabilities. Another possibility is to extract the signatures
for that attacks, and deploy them in a signature-based IDS.

3 A modular architecture for the analysis of HTTP
payloads

This section provides the details of the IDS proposed in this paper. A simplified
scheme of the system is presented in Figure 2. Several solutions proposed in the
literature (e.g. HMM-Web[5], Spectrogram [11]) focus their analysis only on the
Request-Line (which is in red in the figure). Otherwise, solutions such as PAYL
[13], or HMMPayl [2] analyze the bytes’ distribution of the whole payload but
do not take into account its structure. This paper aim to investigate the use of
a model of the HTTP payload which reflects its structure as it has been defined
by the RFC 2616 [1]. This analysis is performed in two steps. First, the payload
is split in several “fields”, that are analyzed by several HMM ensembles. Second,
the outputs of the HMM are combined using a one-class classifier that finally
assigns a class label to the payload. A more detailed description of these steps
follows.

HMM Ensembles. We briefly reminded the HTTP payload structure in sec-
tion 1, recalling that this structure consists of a Request-Line plus (eventually)
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Fig. 2. A simplified representation of the IDS architecture. An exhaustive list of all
the Request-Headers analyzed by the IDS is reported in Table 1. The analysis of each
header can be carried out by a single HMM or by an ensemble of HMM.

one or more Request-Headers. We also remind here that the Request-Line speci-
fies the resource requested by the browser to the web server (e.g. the index.php
page), whereas the Request-Headers are used by the web browser to provide
additional information to the web server (thus their presence is optional). The
RFC 2616 defines for the HTTP protocol a large number of possible Request-
Headers, the most part of which is generally unused. In order to simplify the
analysis, a list of the headers that a web server is actually using can be easily
produced through a simple inspection of the incoming network traffic. Table 1
reports the list of the 18 headers that we observed within our datasets during
the experimental evaluation of the proposed technique.

Once the set of the Request-Headers to be analyzed has been defined, the
payload is processed as follows. First, a probability is assigned to each Request-
Header and to the Request-Line by a different HMM ensemble through the
Forward-Backward procedure [10]. With respect to the example shown in figure
2, the strings analyzed by the different HMM ensembles are the following: the
string from “GET” to “HTTP/1.1” is analyzed by the the Request-Line ensem-
ble (red); the string “prag.diee.unica.it” is analyzed by the Host ensem-
ble (green); the string “Mozilla/5.0” is analyzed by the User-Agent ensemble
(blue) and so on. Details about the setting of the HMM parameters will be
provided in the following section. It is just worth noting that the use of HMM
ensembles instead of single HMM allows mitigating the risk of having a single
HMM that performs poorly, due to the random initialization of the parameters.
The output of the HMM ensemble is thus computed by averaging the outputs
of the individual HMMs, as they differ for the parameter initialization only.

One Class classifier. The analysis performed by the HMM ensembles pro-
duces as output a set of probabilities assigned to the Request-Line and Headers
by the ensembles (see figure 2). Obviously a fusion stage is required in order to
combine the outputs of the the different ensembles. We considered static rules
(e.g. the mean or the product rule) to perform the combination. Unfortunately,
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Table 1. List of the Request-Headers analyzed by the IDS. A detailed description of
the role played by each header within the HTTP protocol can be found in [1].

Accept Connection Cache-Control Via User-Agent

Accept-Charset From If-None-Match UA-CPU Transfer-Encoding

Accept-Encoding Host If-Modified-Since UA-OS X-Forwarded-For

Accept-Language Referer Keep-Alive

as we will show in section 5, they do not result suitable for this purpose. A fur-
ther possibility is to concatenate the outputs of the ensembles within an array
that will be provided as input to a one-class classifier. In this case, the outputs
of the ensemble are used as features and a label (attack or legitimate) is assigned
to the payload as the result of a classification in this features space.

It can be observed that a legitimate payload typically contains a number
of five or six headers. Which headers are included in the payload depends on
the settings of the HTTP client. On the other hand, the IDS must be able
to analyze all the headers that occur in the network traffic (we observed the
presence of 18 different headers in the network traces used in our experiments).
As a consequence, the one class classifier will be designed to work in a features
space of size equal to the number of observed headers (18 in our case) plus
one, since the Request-Line must be also analyzed. From the perspective of
the one class classifiers, the absent headers represent “missing features”, since
a probability will be associated by the ensembles only to the headers within
the payload. The problem of managing these missing features is approached
differently in the Training and in the Detection phases. During the training of
the one class classifier, the missing features are replaced by their average value
(computed over the payloads in which they are present). This is a practice well
known in the literature [12]. This choice does not affect the results of classifier
training since the most important features (e.g. the Request-Line) are present
in the largest part of the traffic. In the detection phase, the missing components
are set to the value of -1, that is a value outside the output range of the HMM
(the output range is in [0,1], as they are probabilities).

Complexity Evaluation Since the training of the IDS is performed off-line,
the complexity is estimated for the detection phase only. Let K the number of
Request-Headers analyzed by the IDS (K typically assumes a value in the range
between 15 and 20). If all of these headers appears in the payload, the IDS has to
analyze K +1 sequences (the headers plus the request line). In addition a further
classification step has to be performed in a features space of size K + 1. Just to
provide a brief comparison with a similar approach let us consider the HMMPayl
algorithm [2]. In the case of HMMPayl the number of sequences analyzed by the
IDS is approximately as high as the length (in terms of number of bytes) of the
payload. A typical legitimate payload has a length of several hundreds of bytes.
Thus, the solution proposed here offers two main advantages: the first is that
the number of sequences analyzed is significantly smaller; the second is that this
number is known and depends only on the setup of the IDS.
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4 Experimental Setup

In this Section we describe the experimental setup on which we performed the
experiments.

HMM Parameters The parameter that influences the most the performance
of a discrete HMM is the number of (hidden) states. A rule does not exist to
estimate the optimum value for the number of states for a bunch of data. Here,
we used the “effective-length” of the training sequences, which is an heuristic
that has been successfully used also in [5]. The effective length basically counts
the number of different characters in a string. For instance the effective length of
the string “abc” is 3, that of “abcd” is 4, and that of “aabcdd” is still 4. Thus,
for each ensemble of HMM, we set the number of states of every single HMM
equal to the average effective-length calculated on the corresponding training
set. In addition, the transition and emission matrices are randomly initialized
for each HMM. Then, the estimate of the model parameters that maximize the
probability assigned by the model to the sequences within the training set is
calculated by resorting to the Baum-Welch algorithm [3].

Datasets The intrusion detection algorithm proposed has been deeply tested
on two different datasets of normal traffic, and on three datasets containing
different kinds of attacks. For what concerns datasets of normal traffic both of
them consists of real traffic traces collected at academic institutions. One dataset
is made up of HTTP requests towards the website of the College of Computing
at the Georgia Tech (GT), USA. The other one consists of HTTP request toward
the website of our department (DIEE) at the University of Cagliari, Italy.

They consist respectively of seven and six days of traffic. It is worth to
remark that both the GT and the DIEE datasets are completely unlabeled.
We considered the GT and DIEE datasets as “clean” from known attacks for
the purpose of measuring the false positive rate since any evidence of occurring
attacks has not been reported in the period in which we collected the traffic.

The experiments have been carried out in the same way on both datasets,
for what concerns both training and testing. A k-fold cross validation has been
realized, using in rotation one day of traffic for training and all the remaining
days for testing purposes. Details about the number of packets and the size (in
MB) of each trace are provided in table 2.

We evaluated the detection rate of the IDS on several datasets consisting of
attacks frequently observed against web applications. Attack datasets are briefly

Table 2. Details of the legitimate traffic datasets used for the training and to evaluate
the false alarms rate.

Dataset Day 1 2 3 4 5 6 7

DIEE
Packets 10,200 10,200 10,200 10,200 10,200 10,200 —

Size (MB) 7.2 7.4 6.6 6 6.4 6.7 —

GT
Packets 307,929 171,750 289,649 263,498 195,192 184,572 296,425

Size (MB) 131 72 124 110 79 78 127
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Table 3. Details of the attacks datasets used to evaluate the detection rate.

Dataset Name # of Attacks Description

Generic Attacks 66 Shell-code, Denial of Service or Information Leakage

Shell-code Attacks 11 Shell-code attacks from the Generic Attack dataset

XSS-SQL Attacks 38 Cross-site Scripting and SQL-Injection attacks

described in Table 3. Generic and Shell-code attacks are the same used in [[2,
9]]. Attacks into the XSS-SQL dataset are the same used in [[2, 5]].

Performance Evaluation In order to validate the classification performance
of our detector, we use the ROC curve analysis, and the related Area Under
the ROC Curve (AUC). Since we are interested in evaluating the IDS for small
values of the false positive rate, we computed the area under the ROC curve
in the range [0, 0.1] of the false positive rate. In order to obtain a performance
value in the range [0, 1], we normalized the “partial” AUC (AUCp) computed in
[0, 0.1] by dividing it by 0.1.

5 Experimental Results

This section provides a discussion of the experimental results achieved. The
performance, evaluated in terms of AUCp, has been calculated considering sev-
eral one-class classification algorithms. In addition, we also varied the number of
HMM within each ensemble. A number of HMM from 1 to 3 has been considered.

We first considered the static rules as a possible choice for the one-class
classifier. We considered two rules, respectively the average and the product
rules. The missing features have been excluded from the computation. For the
sake of brevity we report just some examples of the results achieved.

The AUCp was equal to 0.440 on the Generic attacks and equal to 0.464
on the Shell-code attacks (DIEE legitimate traffic) for the average rule. The
results achieved using the product rule (and on the GT dataset) were equivalent.
These results clearly show that static rules are not suitable in this scenario, thus
confirming our choice of one-class classifiers as trainable fusion rules.

We experimented using several classifiers to combine the outputs produced
by the HMM ensembles. In particular, we considered the Gaussian (Gauss)
distribution, the Mixture of Gaussians (MoG), the Parzen density estimators,
and the SVM. For the first three classifiers we used the implementation provided
within the dd tools . For the SVM, we used the implementation provided by
LibSVM. We used a Radial Basis function for the SVM kernel. We left the setting
of the other parameters to the default values.

Table 3(a) and 3(b) report the results achieved on the DIEE and GT dataset
respectively. The same tables also reports the average values of AUCp achieved
by HMMPayl under the same conditions. From a deep comparison between

Dd tools - http://prlab.tudelft.nl/david-tax/dd_tools.html
LibSVM - http://www.csie.ntu.edu.tw/~cjlin/libsvm
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(a) DIEE Dataset.

Attack Dataset HMM Gauss Parzen MoG SVM HMMPayl

Generic
1 0.656 (0.216) 0.931 (0.022) 0.874 (0.097) 0.843 (0.036)

0.922 (0.058)2 0.659 (0.207) 0.931 (0.023) 0.857 (0.125) 0.848 (0.029)

3 0.659 (0.226) 0.933 (0.021) 0.865 (0.129) 0.851 (0.031)

XSS-SQL
1 0.937 (0.030) 0.941 (0.031) 0.923 (0.046) 0.838 (0.203)

0.847 (0.032)2 0.936 (0.030) 0.940 (0.033) 0.915 (0.059) 0.863 (0.175)

3 0.935 (0.030) 0.939 (0.034) 0.924 (0.046) 0.871 (0.161)

Shell-code
1 0.935 (0.030) 0.946 (0.022) 0.923 (0.032) 0.889 (0.061)

0.996 (0.002)2 0.942 (0.033) 0.946 (0.022) 0.916 (0.028) 0.899 (0.055)

3 0.944 (0.035) 0.945 (0.023) 0.924 (0.028) 0.908 (0.056)

(b) GT Dataset.

Attack Dataset HMM Gauss Parzen MoG SVM HMMPayl

Generic

1 0.686 (0.107) 0.920 (0.082) 0.915 (0.035) 0.801 (0.102)
0.866 (0.071)2 0.695 (0.087) 0.922 (0.087) 0.917 (0.037) 0.809 (0.095)

3 0.709 (0.024) 0.923 (0.093) 0.919 (0.028) 0.816 (0.093)

XSS-SQL

1 0.718 (0.107) 0.972 (0.018) 0.870 (0.055) 0.806 (0.043)
0.827 (0.056)2 0.725 (0.095) 0.972 (0.018) 0.896 (0.052) 0.813 (0.037)

3 0.737 (0.083) 0.973 (0.018) 0.904 (0.037) 0.816 (0.030)

Shell-code

1 0.848 (0.060) 0.928 (0.079) 0.930 (0.044) 0.909 (0.073)
0.988 (0.003)2 0.837 (0.041) 0.926 (0.084) 0.910 (0.043) 0.917 (0.075)

3 0.837 (0.036) 0.925 (0.088) 0.909 (0.043) 0.917 (0.072)

Table 4. Average and Standard Deviation values of AUCp. The rightmost column
reports the performance achieved by HMMPayl [2].

HMMPayl and other similar algorithms (e.g [5, 9, 11]) HMMPayl resulted as the
most effective IDS on the same datasets we used here [2]. Thus, in this paper we
consider only HMMPayl for the sake of comparison.

It can be easily observed that if we exclude the case on which the Gauss
classifier is used, the proposed solution performs generally well with respect to
HMMPayl. A result which is worth to notice is that achieved using the Parzen
classifier. In fact in this case the IDS works significantly better than HMMPayl
against the XSS-SQL attacks (especially on the GT dataset) and it works better
also against the Generic attacks. On the contrary, HMMPayl performs better
when Shell-code attacks are considered. This is not surprising since HMMPayl
basically creates a detailed model of the bytes’ distribution of the payload, that
in the case of the Shell-code attacks significantly deviates from that of the
legitimate traffic. Nevertheless, we are quite convinced that the effectiveness of
our IDS can be easily improved also against attacks of this type by designing
more carefully the HMM ensemble. In fact, we observed that for certain headers
the length of the sequences can variate heavily from payload to payload. Since
the probability assigned by a HMM to a sequence significantly depends on the
sequence length, a model that takes into account also the length of the header
would be probably preferable in the case of those headers. It must be also con-
sidered that the one-class classifier can be further optimized since we left the
setting of the parameters to the default values.
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We can also notice that increasing the number of classifiers within the HMM
ensembles does not provide remarkable benefits. It can be observed that in some
cases the AUCp increases with the number of HMM (e.g. in the SVM column)
whereas in other cases the AUCp slightly reduces (e.g. in the Parzen column).
Notwithstanding, the observed variations are very low for both the average and
the standard deviation of the AUCp.

6 Conclusions

This paper we proposes an IDS that models the HTTP payload structure for the
purpose of detecting the attacks against a web server. The IDS heavily relies on
the MCS paradigm, since the outputs provided by a set of HMM ensembles are
combined using a one-class classifier. The experimental results achieved confirm
the effectiveness of the proposed solution and also show that the IDS works
generally better than analogous algorithms. In addition, as a consequence of its
small complexity, this IDS would be easily implemented in a real system.
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