Publications

Export 80 results:
Filters: Author is Battista Biggio  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
D. Solans, Biggio, B., e Castillo, C., «Poisoning Attacks on Algorithmic Fairness», in ECML PKDD, In Press.
B. Biggio, Didaci, L., Fumera, G., e Roli, F., «Poisoning attacks to compromise face templates», in 6th IAPR Int'l Conf. on Biometrics (ICB), Madrid, Spain, 2013. (844.61 KB)
B. Biggio, Rieck, K., Ariu, D., Wressnegger, C., Corona, I., Giacinto, G., e Roli, F., «Poisoning Behavioral Malware Clustering», in AISec'14: Proceedings of the 2014 ACM Workshop on Artificial Intelligence and Security, co-located with CCS '14, Scottsdale, Arizona, USA, 2014, pagg 27-36. (375.58 KB)
B. Biggio, Rota Bulò, S., Pillai, I., Mura, M., Zemene Mequanint, E., Pelillo, M., e Roli, F., «Poisoning complete-linkage hierarchical clustering», in Joint IAPR Int'l Workshop on Structural, Syntactic, and Statistical Pattern Recognition (LNCS), Joensuu, Finland, 2014, vol 8621, pagg 42-52. (388.31 KB)
R. Labaca-Castro, Biggio, B., e Rodosek, G. Dreo, «Poster: Attacking Malware Classifiers by Crafting Gradient-Attacks That Preserve Functionality», in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, 2019, pagg 2565–2567.
R
S. Rota Bulò, Biggio, B., Pillai, I., Pelillo, M., e Roli, F., «Randomized Prediction Games for Adversarial Machine Learning», IEEE Transactions on Neural Networks and Learning Systems, vol 28, n° 11, pagg 2466-2478, 2017. (1.52 MB) (256.21 KB)
Z. Akhtar, Biggio, B., Fumera, G., e Marcialis, G. L., «Robustness of Multi-modal Biometric Systems under Realistic Spoof Attacks against All Traits», in IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BioMS), Milan, Italy, 2011, pagg 5-10. (954 KB)
B. Biggio, Akhtar, Z., Fumera, G., Marcialis, G. L., e Roli, F., «Robustness of multi-modal biometric verification systems under realistic spoofing attacks», in Int’l Joint Conference on Biometrics (IJCB), Washington DC, USA, 2011. (2.25 MB)
S
M. Melis, Demontis, A., Pintor, M., Sotgiu, A., e Biggio, B., «secml: A Python Library for Secure and Explainable Machine Learning». 2019. (1.1 MB)
P. Russu, Demontis, A., Biggio, B., Fumera, G., e Roli, F., «Secure Kernel Machines against Evasion Attacks», in 9th ACM Workshop on Artificial Intelligence and Security, Vienna, Austria, 2016, pagg 59-69. (686.41 KB)
A. Demontis, Russu, P., Biggio, B., Fumera, G., e Roli, F., «On Security and Sparsity of Linear Classifiers for Adversarial Settings», in Joint IAPR Int'l Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Merida, Mexico, 2016, vol 10029 of LNCS, pagg 322-332. (425.68 KB)
B. Biggio, Akhtar, Z., Fumera, G., Marcialis, G. L., e Roli, F., «Security evaluation of biometric authentication systems under real spoofing attacks», IET Biometrics, vol 1, n° 1, pagg 11-24, 2012. (3.21 MB)
B. Biggio, Fumera, G., e Roli, F., «Security evaluation of pattern classifiers under attack», IEEE Transactions on Knowledge and Data Engineering, vol 26, n° 4, pagg 984-996, 2014. (1.35 MB)
B. Biggio, Corona, I., Nelson, B., Rubinstein, B. I. P., Maiorca, D., Fumera, G., Giacinto, G., e Roli, F., «Security Evaluation of Support Vector Machines in Adversarial Environments», in Support Vector Machines Applications, Y. Ma e Guo, G. Springer International Publishing, 2014, pagg 105-153. (687.1 KB)
B. Biggio, Fumera, G., Marcialis, G. L., e Roli, F., «Security of pattern recognition systems in adversarial environments». 2012. (235.41 KB)
B. Biggio, Melis, M., Fumera, G., e Roli, F., «Sparse Support Faces», in Int'l Conf. on Biometrics (ICB), 2015, pagg 208-213. (702.84 KB)
B. Biggio, Fumera, G., Marcialis, G. L., e Roli, F., «Statistical Meta-Analysis of Presentation Attacks for Secure Multibiometric Systems», IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 39, n° 3, pagg 561-575, 2017. (5.7 MB)
A. Demontis, Melis, M., Biggio, B., Fumera, G., e Roli, F., «Super-sparse Learning in Similarity Spaces», IEEE Computational Intelligence Magazine, vol 11, n° 4, pagg 36-45, 2016. (555.22 KB)
A. Demontis, Biggio, B., Fumera, G., e Roli, F., «Super-Sparse Regression for Fast Age Estimation From Faces at Test Time», in 18th Int'l Conf. on Image Analysis and Processing (ICIAP), Genova, Italy, 2015, vol Image Analysis and Processing (ICIAP 2015), pagg 551-562. (678.7 KB)
H. Xiao, Biggio, B., Nelson, B., Xiao, H., Eckert, C., e Roli, F., «Support Vector Machines under Adversarial Label Contamination», Neurocomputing, Special Issue on Advances in Learning with Label Noise, vol 160, pagg 53-62, 2015. (2.8 MB)
B. Biggio, Nelson, B., e Laskov, P., «Support Vector Machines Under Adversarial Label Noise», in Journal of Machine Learning Research - Proc. 3rd Asian Conference on Machine Learning (ACML 2011), Taoyuan, Taiwan, 2011, vol 20, pagg 97-112. (533.74 KB)
B. Biggio, Fumera, G., Pillai, I., e Roli, F., «A survey and experimental evaluation of image spam filtering techniques», Pattern Recognition Letters, vol 32, pagg 1436 - 1446, 2011. (2.12 MB)
T
D. Maiorca, Biggio, B., e Giacinto, G., «Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks», ACM Computing Surveys, vol 52, n° 4, 2019. (1.21 MB)
L. Muñoz-González, Biggio, B., Demontis, A., Paudice, A., Wongrassamee, V., Lupu, E. C., e Roli, F., «Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization», in 10th ACM Workshop on Artificial Intelligence and Security, 2017, pagg 27-38. (4.08 MB)
P. Temple, Acher, M., Perrouin, G., Biggio, B., Jezequel, J. - M., e Roli, F., «Towards Quality Assurance of Software Product Lines with Adversarial Configurations», in Proceedings of the 23rd International Systems and Software Product Line Conference - Volume A, New York, NY, USA, 2019, pagg 277–288. (2.09 MB)

Pages